Skip to main content

Cutting Forces and Power in Machining Shaping of AlCu4MgSi Aluminium Alloy

  • Chapter
  • First Online:
Book cover Sustainable Production: Novel Trends in Energy, Environment and Material Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 198))

  • 618 Accesses

Abstract

The results of studies of cutting forces and power are presented when turning AlCu4MgSi alloy under various cooling conditions and using various coatings on inserts. It has been found that the conditions for cooling the cutting zone affect insignificantly the cutting forces with a certain decrease for the case of MQCL. The effect of the coating composition is also small, except for the case of cutting with a larger cutting depth and lower feed rates and cutting speeds, when TiAlN coating provided a reduction in the cutting force by 1.7–2.5 times. The relationship between the components of the cutting force can be described by the dependence FcFp > Ff. The intensity of the influence of the cutting parameters on the forces decreases in the direction fapvc. The cutting power is low, less than 2 kW. The exception is cutting with maximum speed and significant feeds and cutting depths, which can be explained in this case by the influence of the inertia force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oczoś, K.E., Kawalec, A.: Kształtowanie metali lekkich. PWN, Warszawa (2012)

    Google Scholar 

  2. Songmene, V., Khettabi, R., Zaghbani, I., Kouam, J.A.D.: Machining and machinability of aluminum alloys. In: Aluminium Alloys, Theory and Applications. Red. Kvackaj Tibor, Canada (2011)

    Google Scholar 

  3. Wojciechowski, S., Maruda, R.W., Krolczyk, G.M., Nieslony, P.: Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling. Precis. Eng. 51, 582–596 (2018)

    Article  Google Scholar 

  4. Wojciechowski, S., Maruda, R.W., Nieslony, P., Krolczyk, G.M.: Investigation on the edge forces in ball end milling of inclined surfaces. Int. J. Mech. Sci. 119, 360–369 (2016)

    Article  Google Scholar 

  5. Fukui, H., Okida, J., Omori, N., Moriguchi, H., Tsuda, K.: Cutting performance of DLC coated tools in dry machining aluminum alloys. Surf. Coat. Technol. 187(1), 70–76 (2004)

    Article  Google Scholar 

  6. Sreejith, P.S.: Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions. Mater. Lett. 62(2), 276–278 (2008)

    Article  Google Scholar 

  7. Siddesh Kumar, N.G., Shiva Shankar, G.S., Ganesh, M.N., Vibudha, L.K.: Experimental investigations to study the cutting force and surface roughness during turning of aluminium metal matrix hybrid composites. Mater. Today: Proc. 4, 9371–9374 (2017)

    Article  Google Scholar 

  8. Wang, B., Liu, Z., Song, Q., Wan, Y., Shi, Z.: Proper selection of cutting parameters and cutting tool angle to lower the specific cutting energy during high speed machining of 7050-T7451 aluminum alloy. J. Clean. Prod. 129, 292–304 (2016)

    Article  Google Scholar 

  9. Adamski, W.: Wybrane kierunki zwiększania wydajności procesów skrawania. Mechanik 5–6, 540–546 (2009)

    Google Scholar 

  10. Obróbka skrawaniem stopów aluminium i magnezu. Praca zbiorowa. Pod red. Kuczmaszewski, J., Zaleski, K. Lublin, Politechnika Lubelska (2015)

    Google Scholar 

  11. Jawahir, I.S., Dillon Jr., O.W.: Sustainable manufacturing processes: new challenges for developing predictive models and optimization techniques. In: Proceedings of the First International Conference on Sustainable Manufacturing SM1, pp. 1–15. Montreal, Canada (2007)

    Google Scholar 

  12. Patalas-Maliszewska, J., Klos, S.: An Intelligent System for Core-Competence Identification for Industry 4.0 Based on Research Results from German and Polish Manufacturing Companies in a Production Facility. Intelligent Systems in Production Engineering and Maintenance—ISPEM 2017. Book Series: Advances in Intelligent Systems and Computing, 637, 131–139 (2018)

    Google Scholar 

  13. Mia, M., Rifat, A., Tanvir, MdF, Gupta, M.K., Hossain, MdJ, Goswami, A.: Multi-objective optimization of chip-tool interaction parameters using Grey-Taguchi method in MQL-assisted turning. Measurement 129, 156–166 (2018)

    Article  Google Scholar 

  14. Maruda, R.W., Feldshtein, E., Legutko, S., Krolczyk, G.M.: Analysis of contact phenomena and heat exchange in the cutting zone under minimum quantity cooling lubrication conditions. Arab. J. Sci. Eng. 41(2), 661–668 (2016)

    Article  Google Scholar 

  15. Maruda, R.W., Krolczyk, G.M., Michalski, M., Nieslony, P., Wojciechowski, S.: Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication. J. Mater. Eng. Perform. 26(1), 431–438 (2017)

    Article  Google Scholar 

  16. Krolczyk, G.M., Maruda, R.W., Krolczyk, J.B., Nieslony, P., Wojciechowski, S., Legutko, S.: Parametric and nonparametric description of the surface topography in the dry and MQCL cutting conditions. Measurement 121, 225–239 (2018)

    Article  Google Scholar 

  17. Gupta, M.K., Sood, P.K., Sharma, V.S.: Machining parameters optimization of titanium alloy using response surface methodology and particle swarm optimization under minimum-quantity lubrication environment. Mater. Manuf. Processes 31, 1671–1682 (2016)

    Article  Google Scholar 

  18. Nadolny, K., Wojtewicz, M., Sienicki, W., Herman, D.: An analysis of centrifugal MQL supply system potential in the internal cylindrical grinding process. Arch. Civil Mech. Eng. 15(3), 639–649 (2015)

    Article  Google Scholar 

  19. Maruda, R.W., Feldshtein, E., Legutko, S., Krolczyk, G.M.: Research emulsion mist generation in the conditions of minimum quantity cooling lubrication (MQCL). Teh. Vjesn. – Tech. Gaz. 22(5), 1213–1218 (2015)

    Google Scholar 

  20. Chuangwen, X., Ting, X., Huaiyuan, L., Zhicheng, S., Hongbing, J., Mandong, L.: Friction, wear, and cutting tests on 022Cr17Ni12Mo2 stainless steel under minimum quantity lubrication conditions. Int. J. Adv. Manuf. Technol. 90(1–4), 677–689 (2017)

    Article  Google Scholar 

  21. Maruda, R.W., Legutko, S., Krolczyk, G.M., Raos, P.: Influence of cooling conditions on the machining process under MQCL and MQL conditions. Teh. Vjesn. - Tech. Gaz. 22(4), 965–970 (2015)

    Article  Google Scholar 

  22. Maruda, R.W., Krolczyk, G.M., Nieslony, P., Wojciechowski, S., Michalski, M., Legutko, S.: The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism. J. Manuf. Process. 24, 107–115 (2016)

    Article  Google Scholar 

  23. Kishawy, H.A., Dumitrescu, M., Ng, E.G., Elbestawi, M.A.: Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy. Int. J. Mach. Tools Manuf. 45(2), 219–227 (2005)

    Article  Google Scholar 

  24. Pusavec, F., Kramar, D., Krajnik, P., Kopac, J.: Transitioning to sustainable production—Part II: Evaluation of sustainable machining technologies. J. Clean. Prod. 18(12), 1211–1221 (2010)

    Article  Google Scholar 

  25. Taavitsainen, V.M.T.: Experimental optimization and response surfaces. In: Varmuza, K. (ed.) Chemometrics in Practical Applications, pp. 91–138. In Tech, Rijeka (2012)

    Google Scholar 

  26. Maruda, R.W., Krolczyk, G.M., Feldshtein, E., Pusavec, F., Szydlowski, M., Legutko, S., Sobczak-Kupiec, A.: A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int. J. Mach. Tools Manuf. 100, 81–92 (2016)

    Article  Google Scholar 

  27. Rusinek, R., Warmiński, J.: Skrawanie toczeniem elementów o przekroju niekołowym. Eksploatacja i niezawodność 4, 30–33 (2004)

    Google Scholar 

  28. Śniegulska-Grądzka, D., Nejman, M., Jemielniak, K.: Cutting force coefficients determination using vibratory cutting. Proc. CIRP 62, 205–208 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Feldshtein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feldshtein, E., Legutko, S. (2020). Cutting Forces and Power in Machining Shaping of AlCu4MgSi Aluminium Alloy. In: Królczyk, G., Wzorek, M., Król, A., Kochan, O., Su, J., Kacprzyk, J. (eds) Sustainable Production: Novel Trends in Energy, Environment and Material Systems. Studies in Systems, Decision and Control, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-030-11274-5_10

Download citation

Publish with us

Policies and ethics