Skip to main content

Salp Swarm Algorithm: Theory, Literature Review, and Application in Extreme Learning Machines

  • Chapter
  • First Online:
Book cover Nature-Inspired Optimizers

Part of the book series: Studies in Computational Intelligence ((SCI,volume 811))

Abstract

Salp Swarm Algorithm (SSA) is a recent metaheuristic inspired by the swarming behavior of salps in oceans. SSA has demonstrated its efficiency in various applications since its proposal. In this chapter, the algorithm, its operators, and some of the remarkable works that utilized this algorithm are presented. Moreover, the application of SSA in optimizing the Extreme Learning Machine (ELM) is investigated to improve its accuracy and overcome the shortcomings of its conventional training method. For verification, the algorithm is tested on 10 benchmark datasets and compared to two other well-known training methods. Comparison results show that SSA based training methods outperforms other methods in terms of accuracy and is very competitive in terms of prediction stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbassi, R., Abbassi, A., Heidari, A. A., & Mirjalili, S. (2019). An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Conversion and Management, 179, 362–372.

    Google Scholar 

  2. Al-Madi, N., Aljarah, I., & Ludwig, S. (2014). Parallel glowworm swarm optimization clustering algorithm based on mapreduce. In IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2014). IEEE Xplore Digital Library.

    Google Scholar 

  3. Aljarah, I., AlaM, A. Z., Faris, H., Hassonah, M. A., Mirjalili, S., & Saadeh, H. (2018). Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cognitive Computation pp. 1–18.

    Google Scholar 

  4. Aljarah, I., Faris, H., & Mirjalili, S. (2018). Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Computing, 22(1), 1–15.

    Article  Google Scholar 

  5. Aljarah, I., Faris, H., Mirjalili, S., & Al-Madi, N. (2018). Training radial basis function networks using biogeography-based optimizer. Neural Computing and Applications, 29(7), 529–553.

    Article  Google Scholar 

  6. Aljarah, I., & Ludwig, S. A.: (2012). Parallel particle swarm optimization clustering algorithm based on mapreduce methodology. In Proceedings of the Fourth World Congress on Nature and Biologically Inspired Computing (IEEE NaBIC12). IEEE Explore.

    Google Scholar 

  7. Aljarah, I., & Ludwig, S. A. (2013). A mapreduce based glowworm swarm optimization approach for multimodal functions. In IEEE Symposium Series on Computational Intelligence, IEEE SSCI 2013. IEEE Xplore.

    Google Scholar 

  8. Aljarah, I., & Ludwig, S. A.: A new clustering approach based on glowworm swarm optimization. In Proceedings of 2013 IEEE Congress on Evolutionary Computation Conference (IEEE CEC13), Cancun, Mexico. IEEE Xplore.

    Google Scholar 

  9. Aljarah, I., & Ludwig, S. A. (2013). Towards a scalable intrusion detection system based on parallel pso clustering using mapreduce. In Proceedings of Genetic and Evolutionary Computation Conference (ACM GECCO13) Amsterdam, July 2013. ACM.

    Google Scholar 

  10. Aljarah, I., & Ludwig, S. A. (2016). A scalable mapreduce-enabled glowworm swarm optimization approach for high dimensional multimodal functions. International Journal of Swarm Intelligence Research (IJSIR), 7(1), 32–54.

    Article  Google Scholar 

  11. Aljarah, I., Mafarja, M., Heidari, A. A., Faris, H., Zhang, Y., & Mirjalili, S. (2018). Asynchronous accelerating multi-leader salp chains for feature selection. Applied Soft Computing, 71, 964–979.

    Google Scholar 

  12. Aminisharifabad, M., Yang, Q., & Wu, X. (2018). A Penalized Autologistic regression with application for modeling the microstructure of dual-phase high strength steel. Journal of Quality Technology, in-press.

    Google Scholar 

  13. Asaithambi, S., & Rajappa, M. (2018). Swarm intelligence-based approach for optimal design of cmos differential amplifier and comparator circuit using a hybrid salp swarm algorithm. Review of Scientific Instruments, 89(5), 054702.

    Article  Google Scholar 

  14. Barham, R., & Aljarah, I. (2017). Link prediction based on whale optimization algorithm. In The International Conference on new Trends in Computing Sciences (ICTCS2017), Amman, Jordan.

    Google Scholar 

  15. Barik, A. K., & Das, D. C. (2018). Active power management of isolated renewable microgrid generating power from rooftop solar arrays, sewage waters and solid urban wastes of a smart city using salp swarm algorithm. In Technologies for Smart-City Energy Security and Power (ICSESP), 2018. (pp. 1–6). IEEE.

    Google Scholar 

  16. Baygi, S. M. H., Karsaz, A., & Elahi, A. (2018). A hybrid optimal pid-fuzzy control design for seismic exited structural system against earthquake: A salp swarm algorithm. In 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS) (pp. 220–225). IEEE.

    Google Scholar 

  17. Chitsaz, H., & Aminisharifabad, M. (2015). Exact learning of rna energy parameters from structure. Journal of Computational Biology, 22(6), 463–473.

    Article  MathSciNet  Google Scholar 

  18. Cho, J. H., Lee, D. J., & Chun, M. G. (2007). Parameter optimization of extreme learning machine using bacterial foraging algorithm. Journal of Korean Institute of Intelligent Systems, 17(6), 807–812.

    Article  Google Scholar 

  19. Ding, S., Su, C., & Yu, J. (2011). An optimizing bp neural network algorithm based on genetic algorithm. Artificial Intelligence Review, 36(2), 153–162.

    Article  Google Scholar 

  20. Ekinci, S., & Hekimoglu, B. (2018). Parameter optimization of power system stabilizer via salp swarm algorithm. In 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE) (pp. 143–147). IEEE.

    Google Scholar 

  21. El-Fergany, A. A. (2018). Extracting optimal parameters of pem fuel cells using salp swarm optimizer. Renewable Energy, 119, 641–648.

    Article  Google Scholar 

  22. Eshtay, M., Faris, H., & Obeid, N. (2018). Improving extreme learning machine by competitive swarm optimization and its application for medical diagnosis problems. Expert Systems with Applications, 104, 134–152.

    Article  Google Scholar 

  23. Eshtay, M., Faris, H., & Obeid, N. (2018). Metaheuristic-based extreme learning machines: a review of design formulations and applications. International Journal of Machine Learning and Cybernetics (pp. 1–19).

    Google Scholar 

  24. Faris, H., Mafarja, M., Heidari, A., Aljarah, I., Al-Zoubi, A., Mirjalili, S., et al. (2018). An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowledge-Based Systems, 154, 43–67.

    Google Scholar 

  25. Faris, H., Ala’M, A. Z., Heidari, A. A., Aljarah, I., Mafarja, M., Hassonah, M. A., et al. (2019). An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks. Information Fusion, 48, 67–83.

    Google Scholar 

  26. Faris, H., Aljarah, I., Al-Madi, N., & Mirjalili, S. (2016). Optimizing the learning process of feedforward neural networks using lightning search algorithm. International Journal on Artificial Intelligence Tools, 25(06), 1650033.

    Article  Google Scholar 

  27. Faris, H., Aljarah, I., Al-Shboul, B. (2016). A hybrid approach based on particle swarm optimization and random forests for e-mail spam filtering. In International Conference on Computational Collective Intelligence (pp. 498–508). Springer, Cham.

    Google Scholar 

  28. Faris, H., Aljarah, I., & Mirjalili, S. (2016). Training feedforward neural networks using multi-verse optimizer for binary classification problems. Applied Intelligence, 45(2), 322–332.

    Article  Google Scholar 

  29. Faris, H., Aljarah, I., & Mirjalili, S. (2017). Evolving radial basis function networks using moth–flame optimizer. In Handbook of Neural Computation (pp. 537–550).

    Google Scholar 

  30. Faris, H., Aljarah, I., & Mirjalili, S. (2017). Improved monarch butterfly optimization for unconstrained global search and neural network training. Applied Intelligence pp. 1–20.

    Google Scholar 

  31. Faris, H., & Aljarah, I., et al. (2015). Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection. In 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT) (pp. 1–5). IEEE.

    Google Scholar 

  32. Faris, H., Hassonah, M. A., AlaM, A. Z., Mirjalili, S., & Aljarah, I. (2017). A multi-verse optimizer approach for feature selection and optimizing svm parameters based on a robust system architecture. Neural Computing and Applications pp. 1–15.

    Google Scholar 

  33. Ghatasheh, N., Faris, H., Aljarah, I., & Al-Sayyed, R. M. (2015). Optimizing software effort estimation models using firefly algorithm. Journal of Software Engineering and Applications, 8(03), 133.

    Article  Google Scholar 

  34. Gori, M., & Tesi, A. (1992). On the problem of local minima in backpropagation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1, 76–86.

    Article  Google Scholar 

  35. Gupta, J. N., & Sexton, R. S. (1999). Comparing backpropagation with a genetic algorithm for neural network training. Omega, 27(6), 679–684.

    Article  Google Scholar 

  36. Han, F., Yao, H. F., & Ling, Q. H. (2013). An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing, 116, 87–93.

    Article  Google Scholar 

  37. Heidari, A. A., Faris, H., Aljarah, I., & Mirjalili, S. (2018). An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Computing, 1–18.

    Google Scholar 

  38. Heidari, A. A., Kazemizade, O., & Hakimpour, F. (2017). A new hybrid yin-yang-pair swarm optimization algorithm for uncapacitated warehouse location problems. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W4 (pp. 373–379).

    Google Scholar 

  39. Heidari, A. A., Mirvahabi, S. S., & Homayouni, S. (2015). An effective hybrid support vector regression with chaos-embedded biogeography-based optimization strategy for prediction of earthquake-triggered slope deformations. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W5 (pp. 301–305).

    Google Scholar 

  40. Heidari, A. A., & Abbaspour, R. A. (2018). Enhanced chaotic grey wolf optimizer for real-world optimization problems: A comparative study. In Handbook of Research on Emergent Applications of Optimization Algorithms (pp. 693–727). IGI Global.

    Google Scholar 

  41. Heidari, A. A., Abbaspour, R. A., & Jordehi, A. R. (2017). An efficient chaotic water cycle algorithm for optimization tasks. Neural Computing and Applications, 28(1), 57–85.

    Article  Google Scholar 

  42. Heidari, A. A., Abbaspour, R. A., & Jordehi, A. R. (2017). Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems. Applied Soft Computing, 57, 657–671.

    Article  Google Scholar 

  43. Heidari, A. A., & Delavar, M. R. (2016). A modified genetic algorithm for finding fuzzy shortest paths in uncertain networks. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B2 (pp. 299–304).

    Google Scholar 

  44. Heidari, A. A., & Pahlavani, P. (2017). An efficient modified grey wolf optimizer with lévy flight for optimization tasks. Applied Soft Computing, 60, 115–134.

    Article  Google Scholar 

  45. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: A new learning scheme of feedforward neural networks. In 2004 IEEE International Joint Conference on Neural Networks, 2004. Proceedings. vol. 2 (pp. 985–990). IEEE.

    Google Scholar 

  46. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1), 489–501.

    Article  Google Scholar 

  47. Hussien, A. G., Hassanien, A. E., & Houssein, E. H. (2017). Swarming behaviour of salps algorithm for predicting chemical compound activities. In 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) (pp. 315–320). IEEE.

    Google Scholar 

  48. Ismael, S., Aleem, S., Abdelaziz, A., & Zobaa, A. (2018). Practical considerations for optimal conductor reinforcement and hosting capacity enhancement in radial distribution systems. IEEE Access.

    Google Scholar 

  49. Lichman, M.: UCI machine learning repository (2013), http://archive.ics.uci.edu/ml.

  50. Mafarja, M., & Abdullah, S. (2011). Modified great deluge for attribute reduction in rough set theory. In 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) (vol. 3, pp. 1464–1469). IEEE.

    Google Scholar 

  51. Mafarja, M., & Abdullah, S. (2013). Investigating memetic algorithm in solving rough set attribute reduction. International Journal of Computer Applications in Technology, 48(3), 195–202.

    Article  Google Scholar 

  52. Mafarja, M., & Abdullah, S. (2013). Record-to-record travel algorithm for attribute reduction in rough set theory. Journal of Theoretical and Applied Information Technology, 49(2), 507–513.

    MATH  Google Scholar 

  53. Mafarja, M., & Abdullah, S. (2014). Fuzzy modified great deluge algorithm for attribute reduction. In Recent Advances on Soft Computing and Data Mining (pp. 195–203). Springer, Cham.

    Google Scholar 

  54. Mafarja, M., & Abdullah, S. (2015). A fuzzy record-to-record travel algorithm for solving rough set attribute reduction. International Journal of Systems Science, 46(3), 503–512.

    Article  MATH  Google Scholar 

  55. Mafarja, M., Aljarah, I., Heidari, A. A., Hammouri, A. I., Faris, H., AlaM, A. Z., et al. (2018). Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowledge-Based Systems, 145, 25–45.

    Article  Google Scholar 

  56. Mafarja, M., Aljarah, I., Heidari, A. A., Faris, H., Fournier-Viger, P., Li, X., et al. (2018). Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowledge-Based Systems, 161, 185–204.

    Google Scholar 

  57. Mafarja, M., Jaber, I., Eleyan, D., Hammouri, A., & Mirjalili, S. (2017). Binary dragonfly algorithm for feature selection. In 2017 International Conference on New Trends in Computing Sciences (ICTCS) (pp. 12–17).

    Google Scholar 

  58. Mafarja, M., & Mirjalili, S. (2017). Whale optimization approaches for wrapper feature selection. Applied Soft Computing, 62, 441–453.

    Article  Google Scholar 

  59. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software.

    Google Scholar 

  60. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Let a biogeography-based optimizer train your multi-layer perceptron. Information Sciences, 269, 188–209.

    Article  MathSciNet  Google Scholar 

  61. Mohapatra, P., Chakravarty, S., & Dash, P. K. (2015). An improved cuckoo search based extreme learning machine for medical data classification. Swarm and Evolutionary Computation, 24, 25–49.

    Article  Google Scholar 

  62. Mohapatra, T. K., & Sahu, B. K. (2018). Design and implementation of ssa based fractional order pid controller for automatic generation control of a multi-area, multi-source interconnected power system. In Technologies for Smart-City Energy Security and Power (ICSESP), 2018 (pp. 1–6). IEEE.

    Google Scholar 

  63. Reddy, Y. V. K., & Reddy, M. D. Solving economic load dispatch problem with multiple fuels using teaching learning based optimization and salp swarm algorithm. Zeki Sistemler Teori ve Uygulamaları Dergisi, 1(1), 5–15.

    Google Scholar 

  64. Sánchez-Monedero, J., Hervas-Martinez, C., Gutiérrez, P., Ruz, M. C., Moreno, M. R., & Cruz-Ramirez, M. (2010). Evaluating the performance of evolutionary extreme learning machines by a combination of sensitivity and accuracy measures. Neural Network World, 20(7), 899.

    Google Scholar 

  65. Sayed, G. I., Khoriba, G., & Haggag, M. H. (2018). A novel chaotic salp swarm algorithm for global optimization and feature selection. Applied Intelligence pp. 1–20.

    Google Scholar 

  66. Sexton, R. S., Dorsey, R. E., & Johnson, J. D. (1999). Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing. European Journal of Operational Research, 114(3), 589–601.

    Article  MATH  Google Scholar 

  67. Shukri, S., Faris, H., Aljarah, I., Mirjalili, S., & Abraham, A. (2018). Evolutionary static and dynamic clustering algorithms based on multi-verse optimizer. Engineering Applications of Artificial Intelligence, 72, 54–66.

    Article  Google Scholar 

  68. Wdaa, A. S. I. (2008). Differential evolution for neural networks learning enhancement. Ph.D. thesis, Universiti Teknologi Malaysia.

    Google Scholar 

  69. Xu, Y., & Shu, Y. (2006). Evolutionary extreme learning machine-based on particle swarm optimization. Advances in Neural Networks-ISNN, 2006, 644–652.

    Google Scholar 

  70. Yang, Z., Wen, X., Wang, Z. (2015). Qpso-elm: An evolutionary extreme learning machine based on quantum-behaved particle swarm optimization. In 2015 Seventh International Conference on Advanced Computational Intelligence (ICACI) (pp. 69–72). IEEE.

    Google Scholar 

  71. Zhao, H., Huang, G., & Yan, N. (2018). Forecasting energy-related co2 emissions employing a novel ssa-lssvm model: Considering structural factors in china. Energies, 11(4), 781.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedali Mirjalili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faris, H., Mirjalili, S., Aljarah, I., Mafarja, M., Heidari, A.A. (2020). Salp Swarm Algorithm: Theory, Literature Review, and Application in Extreme Learning Machines. In: Mirjalili, S., Song Dong, J., Lewis, A. (eds) Nature-Inspired Optimizers. Studies in Computational Intelligence, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-030-12127-3_11

Download citation

Publish with us

Policies and ethics