Skip to main content

Grey Wolf Optimizer: Theory, Literature Review, and Application in Computational Fluid Dynamics Problems

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 811))

Abstract

This chapter first discusses inspirations, methematicam models, and an in-depth literature of the recently proposed Grey Wolf Optimizer (GWO). Then, several experiments are conducted to analyze and benchmark the performance of different variants and improvements of this algorithm. The chapter also investigates the application of the GWO variants in finding an optimal design for a ship propeller.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  2. E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371–381.

    Google Scholar 

  3. Panwar, L. K., Reddy, S., Verma, A., Panigrahi, B. K., & Kumar, R. (2018). Binary Grey Wolf Optimizer for large scale unit commitment problem. Swarm and Evolutionary Computation, 38, 251–266.

    Article  Google Scholar 

  4. Jayabarathi, T., Raghunathan, T., Adarsh, B. R., & Suganthan, P. N. (2016). Economic dispatch using hybrid grey wolf optimizer. Energy, 111, 630–641.

    Article  Google Scholar 

  5. Srikanth, K., Panwar, L. K., Panigrahi, B. K., Herrera-Viedma, E., Sangaiah, A. K., & Wang, G. G. (2017). Meta-heuristic framework: Quantum inspired binary grey wolf optimizer for unit commitment problem. Computers & Electrical Engineering.

    Google Scholar 

  6. Sujatha, K., & Punithavathani, D. S. (2018). Optimized ensemble decision-based multi-focus imagefusion using binary genetic Grey-Wolf optimizer in camera sensor networks. Multimedia Tools and Applications, 77(2), 1735–1759.

    Article  Google Scholar 

  7. C., Xiao, S., Li, X., & Gao, L. (2016). An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Advances in Engineering Software, 99, 161–176.

    Google Scholar 

  8. Wang, S., Hua, G., Hao, G., & Xie, C. (2017). A comparison of different transfer functions for binary version of grey wolf optimiser. International Journal of Wireless and Mobile Computing, 13(4), 261–269.

    Article  Google Scholar 

  9. L., Sun, L., Guo, J., Qi, J., Xu, B., & Li, S. (2017). Modified discrete grey wolf optimizer algorithm for multilevel image thresholding. Computational intelligence and neuroscience.

    Google Scholar 

  10. Seth, J. K., & Chandra, S. (2016, March). Intrusion detection based on key feature selection using binary GWO. In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 3735–3740). IEEE.

    Google Scholar 

  11. Manikandan, S. P., Manimegalai, R., & Hariharan, M. (2016). Gene Selection from microarray data using binary grey wolf algorithm for classifying acute leukemia. Current Signal Transduction Therapy, 11(2), 76–83.

    Article  Google Scholar 

  12. Li, L., Sun, L., Kang, W., Guo, J., Han, C., & Li, S. (2016). Fuzzy multilevel image thresholding based on modified discrete grey wolf optimizer and local information aggregation. IEEE Access, 4, 6438–6450.

    Article  Google Scholar 

  13. Reddy, S., Panwar, L. K., Panigrahi, B. K., & Kumar, R. (2016, December). Optimal scheduling of uncertain wind energy and demand response in unit commitment using binary grey wolf optimizer (BGWO). In 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON) (pp. 344–349). IEEE.

    Google Scholar 

  14. Kohli, M., & Arora, S. (2017). Chaotic grey wolf optimization algorithm for constrained optimization problems. Journal of Computational Design and Engineering.

    Google Scholar 

  15. Teeparthi, K., & Kumar, D. V. (2016, December). Grey wolf optimization algorithm based dynamic security constrained optimal power flow. In Power Systems Conference (NPSC), 2016 National (pp. 1–6). IEEE.

    Google Scholar 

  16. Gupta, S., & Deep, K. Random walk grey wolf optimizer for constrained engineering optimization problems. Computational Intelligence.

    Google Scholar 

  17. Yang, J. C., & Long, W. (2016). Improved grey wolf optimization algorithm for constrained mechanical design problems. Applied Mechanics and Materials, 851, 553–558). Trans Tech Publications.

    Google Scholar 

  18. Joshi, H., & Arora, S. (2017). Enhanced grey wolf optimisation algorithm for constrained optimisation problems. International Journal of Swarm Intelligence, 3(2–3), 126–151.

    Article  Google Scholar 

  19. Prakasam, S., Venkatachalam, M., & Saroja, M. (2016). Grey Wolf optimizer for constrained hardware-software codesign partitioning. Programmable Device Circuits and Systems, 8(8), 239–243.

    Google Scholar 

  20. Kumar, G., & Ranga, V. (2017, August). Meta-heuristic solution for relay nodes placement in constrained environment. In 2017 Tenth International Conference on Contemporary Computing (IC3) (pp. 1–6). IEEE.

    Google Scholar 

  21. Long, W., Liang, X., Cai, S., Jiao, J., & Zhang, W. (2017). A modified augmented Lagrangian with improved grey wolf optimization to constrained optimization problems. Neural Computing and Applications, 28(1), 421–438.

    Article  Google Scholar 

  22. Sreenu, K., & Malempati, S. (2017). MFGMTS: Epsilon constraint-based modified fractional grey wolf optimizer for multi-objective task scheduling in cloud computing. IETE Journal of Research, 1–15.

    Google Scholar 

  23. Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. D. S. (2016). Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Systems with Applications, 47, 106–119.

    Article  Google Scholar 

  24. Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256–279.

    Article  Google Scholar 

  25. Lu, C., Gao, L., Li, X., & Xiao, S. (2017). A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry. Engineering Applications of Artificial Intelligence, 57, 61–79.

    Article  Google Scholar 

  26. Yang, Z., & Liu, C. (2018). A hybrid multi-objective gray wolf optimization algorithm for a fuzzy blocking flow shop scheduling problem. Advances in Mechanical Engineering, 10(3), 1687814018765535.

    Google Scholar 

  27. Jangir, P., & Jangir, N. (2018). A new Non-Dominated Sorting Grey Wolf Optimizer (NS-GWO) algorithm: Development and application to solve engineering designs and economic constrained emission dispatch problem with integration of wind power. Engineering Applications of Artificial Intelligence, 72, 449–467.

    Article  Google Scholar 

  28. Sahoo, A., & Chandra, S. (2017). Multi-objective Grey Wolf Optimizer for improved cervix lesion classification. Applied Soft Computing, 52, 64–80.

    Article  Google Scholar 

  29. Lu, C., Xiao, S., Li, X., & Gao, L. (2016). An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Advances in Engineering Software, 99, 161–176.

    Article  Google Scholar 

  30. Kamboj, V. K. (2016). A novel hybrid PSOGWO approach for unit commitment problem. Neural Computing and Applications, 27(6), 1643–1655.

    Article  Google Scholar 

  31. Singh, N., & Singh, S. B. (2017). Hybrid algorithm of particle swarm optimization and Grey Wolf optimizer for improving convergence performance. Journal of Applied Mathematics.

    Google Scholar 

  32. Chopra, N., Kumar, G., & Mehta, S. (2016). Hybrid GWO-PSO algorithm for solving convex economic load dispatch problem. International Journal Research Advanced Technology, 4(6), 37–41.

    Google Scholar 

  33. Eid, H. F., & Abraham, A. (2018). Plant species identification using leaf biometrics and swarm optimization: A hybrid PSO, GWO, SVM model. International Journal of Hybrid Intelligent Systems, (Preprint), 1–11.

    Google Scholar 

  34. Jain, U., Tiwari, R., & Godfrey, W. W. (2018). Odor source localization by concatenating particle swarm optimization and Grey Wolf optimizer. In Advanced Computational and Communication Paradigms (pp. 145–153). Springer, Singapore.

    Google Scholar 

  35. Tawhid, M. A., & Ali, A. F. (2017). A Hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function. Memetic Computing, 9(4), 347–359.

    Article  Google Scholar 

  36. Ab Rashid, M. F. F. (2017). A hybrid Ant-Wolf Algorithm to optimize assembly sequence planning problem. Assembly Automation, 37(2), 238–248.

    Article  Google Scholar 

  37. Abdelazeem, M. (2018, January). A hybrid Grey Wolf-bat algorithm for global optimization. In The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018) (Vol. 723, p. 3). Springer.

    Google Scholar 

  38. ElGayyar, M., Emary, E., Sweilam, N. H., & Abdelazeem, M. (2018, February). A hybrid Grey Wolf-bat algorithm for global optimization. In International Conference on Advanced Machine Learning Technologies and Applications (pp. 3–12). Springer, Cham.

    Google Scholar 

  39. Pan, J. S., Dao, T. K., & Chu, S. C. (2017, November). A novel hybrid GWO-FPA algorithm for optimization applications. In International Conference on Smart Vehicular Technology, Transportation, Communication and Applications (pp. 274–281). Springer, Cham.

    Google Scholar 

  40. Debnath, M. K., Mallick, R. K., & Sahu, B. K. (2017). Application of hybrid differential evolution Grey Wolf optimization algorithm for automatic generation control of a multi-source interconnected power system using optimal fuzzy PID controller. Electric Power Components and Systems, 45(19), 2104–2117.

    Article  Google Scholar 

  41. Singh, N., & Singh, S. B. (2017). A novel hybrid GWO-SCA approach for optimization problems. Engineering Science and Technology, an International Journal.

    Google Scholar 

  42. Zhang, X., Kang, Q., Cheng, J., & Wang, X. (2018). A novel hybrid algorithm based on Biogeography-based optimization and Grey Wolf optimizer. Applied Soft Computing, 67, 197–214.

    Article  Google Scholar 

  43. Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133.

    Article  Google Scholar 

  44. Drela, M. (1989). XFOIL: An analysis and design system for low Reynolds number airfoils. In Low Reynolds number aerodynamics (pp. 1–12). Springer, Berlin, Heidelberg.

    Google Scholar 

  45. Carlton, J. (2012). Marine propellers and propulsion. Butterworth-Heinemann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedali Mirjalili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mirjalili, S., Aljarah, I., Mafarja, M., Heidari, A.A., Faris, H. (2020). Grey Wolf Optimizer: Theory, Literature Review, and Application in Computational Fluid Dynamics Problems. In: Mirjalili, S., Song Dong, J., Lewis, A. (eds) Nature-Inspired Optimizers. Studies in Computational Intelligence, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-030-12127-3_6

Download citation

Publish with us

Policies and ethics