Skip to main content

Grasshopper Optimization Algorithm: Theory, Literature Review, and Application in Hand Posture Estimation

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 811))

Abstract

This chapter covers the fundamental concepts of the recently proposed Grasshopper Optimization Algorithm (GOA). The inspiration, mathematical model, and the algorithm are presented in details. A brief literature review of this algorithm including different variants, improvement, hybrids, and applications are given too. The performance of GOA is tested on a set of test functions including unimodal, multi-modal, and composite. The results show the ability of GOA in improving the quality of a random population, transiting from exploration to exploitation, showing high coverage of the search space, and accelerating the convergence curve over the course of iterations. The chapter also applies the GOA algorithm to a challenging problem in the field of hand posture estimation. It is observed that GOA finds an accurate configuration for a 3D hand model to match a given hand image acquired from a camera.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blum, C., & Li, X. (2008). Swarm intelligence in optimization. In Swarm intelligence (pp. 43–85). Berlin: Springer.

    Google Scholar 

  2. Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In ACM SIGGRAPH computer graphics (Vol. 21, No. 4, pp. 25–34). ACM.

    Google Scholar 

  3. Dorigo, M., & Birattari, M. (2011). Ant colony optimization. In Encyclopedia of machine learning (pp. 36–39). Boston: Springer.

    Google Scholar 

  4. Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory and application. Advances in Engineering Software, 105, 30–47.

    Article  Google Scholar 

  5. Topaz, C. M., Bernoff, A. J., Logan, S., & Toolson, W. (2008). A model for rolling swarms of locusts. The European Physical Journal Special Topics, 157(1), 93–109.

    Article  Google Scholar 

  6. Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H., & Aljarah, I. (2018). Grasshopper optimization algorithm for multi-objective optimization problems. Applied Intelligence, 48(4), 805–820.

    Article  Google Scholar 

  7. Tharwat, A., Houssein, E. H., Ahmed, M. M., Hassanien, A. E., & Gabel, T. (2017). MOGOA algorithm for constrained and unconstrained multi-objective optimization problems. Applied Intelligence, 1–16.

    Google Scholar 

  8. Lewis, A. (2009). LoCost: A spatial social network algorithm for multi-objective optimisation. In IEEE Congress on Evolutionary Computation, 2009. CEC 2009 (pp. 2866–2870). IEEE.

    Google Scholar 

  9. Lewis, A. (2009). The effect of population density on the performance of a spatial social network algorithm for multi-objective optimisation. In IEEE International Symposium on Parallel & Distributed Processing, 2009. IPDPS 2009. (pp. 1–6). IEEE.

    Google Scholar 

  10. Aljarah, I., AlaM, A. Z., Faris, H., Hassonah, M. A., Mirjalili, S., & Saadeh, H. (2018). Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cognitive Computation, 1–18.

    Google Scholar 

  11. Pinto, H., Pea, A., Valenzuela, M., & Fernndez, A. (2018). A binary grasshopper algorithm applied to the knapsack problem. In Computer Science On-line Conference (pp. 132–143). Springer, Cham.

    Google Scholar 

  12. Crawford, B., Soto, R., Pea, A., & Astorga, G. (2018). A binary grasshopper optimisation algorithm applied to the set covering problem. In Computer Science On-line Conference (pp. 1–12). Springer, Cham.

    Google Scholar 

  13. Neve, A. G., Kakandikar, G. M., & Kulkarni, O. (2017). Application of grasshopper optimization algorithm for constrained and unconstrained test functions. International Journal of Swarm Intelligence and Evolutionary Computation, 6(165), 2.

    Google Scholar 

  14. Mafarja, M., Aljarah, I., Heidari, A. A., Hammouri, A. I., Faris, H., AlaM, A. Z., et al. (2018). Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowledge-Based Systems, 145, 25–45.

    Article  Google Scholar 

  15. Ewees, A. A., Elaziz, M. A., & Houssein, E. H. (2018). Improved grasshopper optimization algorithm using opposition-based learning. Expert Systems with Applications.

    Google Scholar 

  16. Arora, S., & Anand, P. (2018). Chaotic grasshopper optimization algorithm for global optimization. Neural Computing and Applications, 1–21.

    Google Scholar 

  17. Saxena, A., Shekhawat, S., & Kumar, R. (2018). Application and development of enhanced chaotic grasshopper optimization algorithms. Modelling and Simulation in Engineering.

    Google Scholar 

  18. Wu, J., Wang, H., Li, N., Yao, P., Huang, Y., Su, Z., & Yu, Y. (2017). Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by adaptive grasshopper optimization algorithm. Aerospace Science and Technology, 70, 497–510.

    Google Scholar 

  19. Wu, J., Wang, H., Li, N., Yao, P., Huang, Y., Su, Z., et al. (2017). Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by adaptive grasshopper optimization algorithm. Aerospace Science and Technology, 70, 497–510.

    Article  Google Scholar 

  20. Barman, M., Choudhury, N. D., & Sutradhar, S. (2018). A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India. Energy, 145, 710–720.

    Article  Google Scholar 

  21. El-Fergany, A. A. (2017). Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser. IET Renewable Power Generation, 12(1), 9–17.

    Article  Google Scholar 

  22. ukasik, S., Kowalski, P. A., Charytanowicz, M., & Kulczycki, P. (2017). Data clustering with grasshopper optimization algorithm. In Federated Conference on Computer Science and Information Systems (FedCSIS), 2017 (pp. 71–74). IEEE.

    Google Scholar 

  23. Rajput, N., Chaudhary, V., Dubey, H. M., & Pandit, M. (2017). Optimal generation scheduling of thermal System using biologically inspired grasshopper algorithm. In 2nd International Conference on Telecommunication and Networks (TEL-NET), 2017 (pp. 1–6). IEEE.

    Google Scholar 

  24. Zhang, X., Miao, Q., Zhang, H., & Wang, L. (2018). A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery. Mechanical Systems and Signal Processing, 108, 58–72.

    Article  Google Scholar 

  25. Zhao, H., Zhao, H., & Guo, S. (2018). Short-term wind electric power forecasting using a novel multi-stage intelligent algorithm. Sustainability, 10(3), 881.

    Article  MathSciNet  Google Scholar 

  26. Buch, H., & Trivedi, I. N. On the efficiency of metaheuristics for solving the optimal power flow. Neural Computing and Applications, 1–19.

    Google Scholar 

  27. Ahanch, M., Asasi, M. S., & Amiri, M. S. (2017). A grasshopper optimization algorithm to solve optimal distribution system reconfiguration and distributed generation placement problem. In IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), 2017 (pp. 0659–0666). IEEE.

    Google Scholar 

  28. Ibrahim, H. T., Mazher, W. J., Ucan, O. N., & Bayat, O. A grasshopper optimizer approach for feature selection and optimizing SVM parameters utilizing real biomedical data sets. Neural Computing and Applications, 1–10.

    Google Scholar 

  29. Amaireh, A. A., Alzoubi, A., & Dib, N. I. (2017). Design of linear antenna arrays using antlion and grasshopper optimization algorithms. In IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), 2017 (pp. 1–6). IEEE.

    Google Scholar 

  30. Hamad, A., Houssein, E. H., Hassanien, A. E., & Fahmy, A. A. (2018). Hybrid grasshopper optimization algorithm and support vector machines for automatic seizure detection in EEG signals. In International Conference on Advanced Machine Learning Technologies and Applications (pp. 82–91). Springer, Cham.

    Google Scholar 

  31. Sharma, A., & Sharma, M. (2017). SAR image segmentation using grasshopper optimization algorithm.

    Google Scholar 

  32. Hekimolu, B., & Ekinci, S. (2018). Grasshopper optimization algorithm for automatic voltage regulator system. In 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE) (pp. 152–156). IEEE.

    Google Scholar 

  33. Fathy, A. (2018). Recent meta-heuristic grasshopper optimization algorithm for optimal reconfiguration of partially shaded PV array. Solar Energy, 171, 638–651.

    Article  Google Scholar 

  34. Heidari, A. A., Faris, H., Aljarah, I., & Mirjalili, S. (2018). An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Computing, 1–18.

    Google Scholar 

  35. Bansal, B. (2016). Gesture recognition: A survey. International Journal of Computer Applications, 139(2).

    Google Scholar 

  36. Smith, A. V. W., Sutherland, A. I., Lemoine, A., & Mcgrath, S. (2000). U.S. Patent No. 6,128,003. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  37. Garg, P., Aggarwal, N., & Sofat, S. (2009). Vision based hand gesture recognition. World Academy of Science, Engineering and Technology, 49(1), 972–977.

    Google Scholar 

  38. Yang, M. H., Ahuja, N., & Tabb, M. (2002). Extraction of 2d motion trajectories and its application to hand gesture recognition. IEEE Transactions on pattern analysis and machine intelligence, 24(8), 1061–1074.

    Article  Google Scholar 

  39. Murakami, K., & Taguchi, H. (1991). Gesture recognition using recurrent neural networks. In Proceedings of the SIGCHI Conference on Human factors in Computing Systems (pp. 237–242). ACM.

    Google Scholar 

  40. Stergiopoulou, E., & Papamarkos, N. (2009). Hand gesture recognition using a neural network shape fitting technique. Engineering Applications of Artificial Intelligence, 22(8), 1141–1158.

    Article  Google Scholar 

  41. Dardas, N. H., & Georganas, N. D. (2011). Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques. IEEE Transactions on Instrumentation and Measurement, 60(11), 3592–3607.

    Article  Google Scholar 

  42. Saha, S., Konar, A., & Roy, J. (2015). Single person hand gesture recognition using support vector machine. In Computational advancement in communication circuits and systems (pp. 161–167). Springer, New Delhi.

    Google Scholar 

  43. Malvezzi, M., Gioioso, G., Salvietti, G., Prattichizzo, D., & Bicchi, A. (2013). SynGrasp: A matlab toolbox for grasp analysis of human and robotic hands. In IEEE International Conference on Robotics and Automation (ICRA), 2013 (pp. 1088–1093). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedali Mirjalili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saremi, S., Mirjalili, S., Mirjalili, S., Song Dong, J. (2020). Grasshopper Optimization Algorithm: Theory, Literature Review, and Application in Hand Posture Estimation. In: Mirjalili, S., Song Dong, J., Lewis, A. (eds) Nature-Inspired Optimizers. Studies in Computational Intelligence, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-030-12127-3_7

Download citation

Publish with us

Policies and ethics