Skip to main content

A Proposal of Dynamic Behaviour Design Based on Mode Shape Tracing: Numerical Application to a Motorbike Frame

  • Conference paper
  • First Online:
Dynamic Substructures, Volume 4

Abstract

A modal based method to design and to improve the dynamic behaviour of flexible multibody systems is proposed in this paper. The dynamic behaviour of a flexible multibody system depends on the dynamics of its components and on the effects of the connections. When dynamics problems are experienced in particular working conditions, changes to the design are required. Usually connections are standard and there is not space for changes, therefore the components should be improved. Changes at components level improve the global system behaviour, but it is not so easy to identify the most effective component for each specific case. The purpose of the proposed method is to identify the most influent components in specific working frequency ranges of a multibody system. The method is based on a hierarchical procedure from assembly to components which leads to the identification of the components to be modified in order to improve assembly performance.

The method is applied to a whole motorbike frame, a multibody system with comparable components stiffnesses. Numerical modal analysis is performed on the full assembly with connections, front and rear sub-assemblies and on single components: chassis, swingarm, engine and wheel.

The method is applied to the selection of the most influent components mode shapes in the motorbike behaviour during manoeuvres at high velocity. The selected components are the most suitable for structural, geometric and material modifications to effectively improve the global motorbike behaviour, performances and driveability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allemang, R.J., Brown, D.L.: A correlation coefficient for modal vector analysis. In: Proceedings of 1st IMAC, pp. 110–116. Orlando, FL (1982)

    Google Scholar 

  2. Bonisoli, E., Marcuccio, G., Rosso, C.: Crossing and veering phenomena in crank mechanism dynamics. In: Proceedings of 31th IMAC, pp. 175–187. Garden Grove, CA (2013)

    Google Scholar 

  3. Sharp, R.S., Limebeer, D.J.N.: A motorcycle model for stability and control analysis. Multibody Syst. Dyn. 6(2), 123–142 (2001)

    Article  Google Scholar 

  4. Cossalter, V., Lot, R.: A motorcycle multi-body model for real time simulations based on the natural coordinates approach. Veh. Syst. Dyn. 37(6), 423–447 (2002)

    Article  Google Scholar 

  5. Sharp, R.S., Evangelou, S., Limebeer, D.J.N.: Advances in the modelling of motorcycle dynamics. Multibody Syst. Dyn. 12, 251–283 (2004)

    Article  Google Scholar 

  6. Leonelli, L., Mancinelli, N.: A multibody motorcycle model with rigid-ring tyres: formulation and validation. Int. J. Veh. Mech. Mobil. 53(6), 775–797 (2015)

    Google Scholar 

  7. Sequenzia, G., Olivieri, S.M., Fatuzzo, G., Calì, M.: An advanced multibody model for evaluating rider’s influence on motorcycle dynamics. J. Multibody Dyn. 229(2), 193–207 (2015)

    Google Scholar 

  8. Olivieri, S.M., Calì, M., Catalano, L.: Dynamics of motorcycle using flexible elements. In: International Design Conference, pp. 1227–1236. Dubrovnik, Croatia (2002)

    Google Scholar 

  9. Ferretti, G., Scaglioni, B., Rossi, A.: Multibody model of a motorbike with a flexible swingarm. In: Proceedings of the 10th International Modelica Conference, pp. 273–282. Lund, Sweden (2014)

    Google Scholar 

  10. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  11. Bocciolone, M., Cheli, F., Pezzola, M., Viganò, R.: Static and dynamic properties of a motorcycle frame: experimental and numerical approach. Trans. Model. Simul. 41, 517–526 (2005)

    Google Scholar 

  12. Lake, K., Thomas, R., Williams, O.: The influence of compliant chassis components on motorcycle dynamics: an historical overview and the potential future impact of carbon fibre. Int. J. Veh. Mech. Mobil. 50(7), 1043–1052 (2012)

    Google Scholar 

  13. Cossalter, V.: Motorcycle Dynamics. Lulu, Morrisville (2006)

    Google Scholar 

  14. Bonisoli, E., Lisitano, D., Dimauro, L.: Experimental and numerical mode shape tracing from components to whole motorbike chassis. In: International Conference on Noise and Vibration Engineering, ISMA, pp. 1–8. Leuven, Belgium, September 17–19 (2018)

    Google Scholar 

  15. Ibrahim, S.R., Sestieri, A.: Existence and normalization of complex modes in post experimental use in modal analysis. In: Proceedings of 13th IMAC, pp. 483–489 (1995)

    Google Scholar 

  16. Vacher, P., Jacquier, B., Bucharles, A.: Extension of the MAC criterion to complex modes. In: International Conference on Noise and Vibration Engineering, ISMA, pp. 2713–2725. Leuven, Belgium (2010)

    Google Scholar 

  17. Cossalter, V., Doria, A., Massaro, M., Taraborrelli, L.: Experimental and numerical investigation on the motorcycle front frame flexibility and its effect on stability. Mech. Syst. Signal Process. 60–61, 452–471 (2015)

    Article  Google Scholar 

  18. Cocco, G.: Dinamica e tecnica della motocicletta. Giorgio Nada Editore, Milan (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvio Bonisoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonisoli, E., Lisitano, D., Dimauro, L., Peroni, L. (2020). A Proposal of Dynamic Behaviour Design Based on Mode Shape Tracing: Numerical Application to a Motorbike Frame. In: Linderholt, A., Allen, M., Mayes, R., Rixen, D. (eds) Dynamic Substructures, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12184-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12184-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12183-9

  • Online ISBN: 978-3-030-12184-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics