A Priori Interface Reduction for Substructuring of Multistage Bladed Disks

  • Lukas SchwerdtEmail author
  • Lars Panning-von Scheidt
  • Jörg Wallaschek
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


When analyzing the dynamics of bladed disks in turbomachinery, most methods focus on a single stage at a time because of the challenges associated with multistage structures. Whereas the cyclic symmetry of individual bladed disks is commonly exploited to yield great savings of computational effort, multistage rotors lack this symmetry due to the differing number of blades in each stage. Substructuring methods can be used to overcome this problem but they still face challenges with non-conforming finite element meshes at the interface between stages. Some state of the art methods expect the nodes at the interface to be arranged in concentric rings and use a truncated Fourier series as basis for the displacement along each ring of nodes. In this paper, a reduction basis for the interface degrees of freedom between adjacent stages is proposed which uses polynomial basis functions in the radial direction in addition to a truncated Fourier series in the circumferential direction. This enables coupling the substructures of multiple stages with arbitrary meshes. Additionally, the resulting reduced order model (ROM) can be smaller while preserving accuracy. The proposed interface reduction is demonstrated in conjunction with a cyclic Craig-Bampton (CB) reduction of each stage. Different ROMs are compared to show the impact of the CB reduction as well as the interface reduction.


Model order reduction Component mode synthesis Multistage Interface reduction Mistuning 



The authors kindly thank the German Research Foundation (DFG) for enabling this publication by funding the research project Influence of Regeneration-induced Mistuning on the Aeroelasticity of Multi-Stage Axial Compressors as part of the Collaborative Research Center 871 Regeneration of Complex Capital Goods.


  1. 1.
    Bladh, R., Castanier, M.P., Pierre, C.: Effects of multistage coupling and disk flexibility on mistuned bladed disk dynamics. J. Eng. Gas Turbines Power 125(1), 121 (2003)CrossRefGoogle Scholar
  2. 2.
    Song, S.H., Castanier, M.P., Pierre, C.: Multi-stage modeling of turbine engine rotor vibration. In: Volume 1: 20th Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C, pp. 1533–1543. ASME, Long Beach (2005)Google Scholar
  3. 3.
    Laxalde, D., Thouverez, F., Lombard, J.P.: Dynamical analysis of multi-stage cyclic structures. Mech. Res. Commun. 34(4), 379–384 (2007)CrossRefGoogle Scholar
  4. 4.
    Sternchüss, A., Balmes, E., Jean, P., Lombard, J.P.: Model reduction applied to multi-stage assemblies of bladed disks. In: ISMA, 15p (2008)Google Scholar
  5. 5.
    Bhartiya, Y., Sinha, A.: Reduced order model of a multistage bladed rotor with geometric mistuning via modal analyses of finite element sectors. J. Turbomach. 134(4), 041001 (2012)CrossRefGoogle Scholar
  6. 6.
    Kurstak, E., D’Souza, K.: Multistage blisk and large mistuning modeling using Fourier Constraint Modes and PRIME. In: Volume 7B: Structures and Dynamics, p. V07BT35A012. ASME, Long Beach (2017)Google Scholar
  7. 7.
    Klerk, D.D., Rixen, D.J., Voormeeren, S.N.: General framework for dynamic substructuring: history, review and classification of techniques. AIAA J. 46(5), 1169–1181 (2008)CrossRefGoogle Scholar
  8. 8.
    Craig, J.R., Roy, R., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)CrossRefGoogle Scholar
  9. 9.
    Schwerdt, L., Willeke, S., Panning-von Scheidt, L., Wallaschek, J.: Reduced-order modeling of bladed disks considering small mistuning the disk sectors. J. Eng. Gas Turbines Power. 141(5), 052502 (2018). Advance online publication CrossRefGoogle Scholar
  10. 10.
    Aoyama, Y., Yagawa, G.: Component mode synthesis for large-scale structural eigenanalysis. Comput. Struct. 79(6), 605–615 (2001)CrossRefGoogle Scholar
  11. 11.
    Balmès, E.: Use of generalized interface degrees of freedom in component mode synthesis. In: Office national d’études et de recherches aérospatiales, Châtillon-sous-Bagneux (1996)Google Scholar
  12. 12.
    Carassale, L., Maurici, M.: Interface reduction in craig–bampton component mode synthesis by orthogonal polynomial series. J. Eng. Gas Turbines Power 140(5), 052504 (2018)CrossRefGoogle Scholar
  13. 13.
    Castanier, M.P., Tan, Y.C., Pierre, C.: Characteristic constraint modes for component mode synthesis. AIAA J. 39(6), 1182–1187 (2001)CrossRefGoogle Scholar
  14. 14.
    Donders, S., Pluymers, B., Ragnarsson, P., Hadjit, R., Desmet, W.: The wave-based substructuring approach for the efficient description of interface dynamics in substructuring. J. Sound Vib. 329(8), 1062–1080 (2010)CrossRefGoogle Scholar
  15. 15.
    Gibanica, M., Abrahamsson, T.J., Rixen, D.J.: A reduced interface component mode synthesis method using coarse meshes. Procedia Eng. 199, 348–353 (2017)CrossRefGoogle Scholar
  16. 16.
    Holzwarth, P., Eberhard, P.: Interface reduction for CMS methods and alternative model order reduction. IFAC-PapersOnLine 48(1), 254–259 (2015)CrossRefGoogle Scholar
  17. 17.
    Tran, D.M.: Component mode synthesis methods using interface modes. Application to structures with cyclic symmetry. Comput. Struct. 79(2), 209–222 (2001)Google Scholar
  18. 18.
    Zhang, G., Castanier, M.P., Pierre, C.: Efficient component mode synthesis with a new interface reduction method. In: Proceedings of IMAC-XXII: A Conference and Exposition on Structural Dynamics (2004)Google Scholar
  19. 19.
    Castanier, M.P., Pierre, C.: Modeling and analysis of mistuned bladed disk vibration: current status and emerging directions. J. Propuls. Power 22(2), 384–396 (2006)CrossRefGoogle Scholar
  20. 20.
    Yang, M.T., Griffin, J.H.: A reduced-order model of mistuning using a subset of nominal system modes. J. Eng. Gas Turbines Power 123(4), 893 (2001)CrossRefGoogle Scholar
  21. 21.
    Sternchüss, A., Balmès, E., Jean, P., Lombard, J.P.: Reduction of multistage disk models: application to an industrial rotor. J. Eng. Gas Turbines Power 131(1), 012502 (2009)CrossRefGoogle Scholar
  22. 22.
    Battiato, G., Firrone, C.M., Berruti, T.M., Epureanu, B.I.: Reduced order modeling for multistage bladed disks with friction contacts at the flange joint. J. Eng. Gas Turbines Power 140(5), 052505 (2018)CrossRefGoogle Scholar
  23. 23.
    Bladh, R., Castanier, M.P., Pierre, C.: Component-mode-based reduced order modeling techniques for mistuned bladed disks, Part I: theoretical models. J. Eng. Gas Turbines Power 123(1), 89–99 (2001)Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 2020

Authors and Affiliations

  • Lukas Schwerdt
    • 1
    Email author
  • Lars Panning-von Scheidt
    • 1
  • Jörg Wallaschek
    • 1
  1. 1.Institute of Dynamics and Vibration Research, Faculty of Mechanical EngineeringLeibniz University HannoverHannoverGermany

Personalised recommendations