Skip to main content

Using Hybrid Modal Substructuring with a Complex Transmission Simulator to Model an Electrodynamic Shaker

  • Conference paper
  • First Online:

Abstract

When conducting a vibration test on an electrodynamic shaker or shaker table, the layout of fixtures and test components on the shaker adapter changes the vibration modes and anti-resonances of the system. During a test, these dynamics can be excited by the shaker itself, leading to an invalid test if the desired environment is exceeded at some points, and potentially damaging the shaker or test components. A high-fidelity shaker model would allow for accurate pretest planning, in which test component layout and control accelerometer placement can be optimized to mitigate problem areas. However, shaker systems are notoriously difficult to model analytically due to a multitude of joints with indefinite properties, unknown stiffness and damping of the magnetic field, and the scarcity of available technical drawings for the internal components. This work explores the use of hybrid modal substructuring to create a test-based model of a shaker table with a dynamically complex shaker fixture. The transmission simulator method is used with an experimentally derived modal model of the shaker and a fixture to decouple a finite element model of the fixture and replace it with a finite element model of the fixture with an attached test article. Special care is taken to ensure that an optimized test layout and accurate FEMs are created. The resultant modal model for the total system is shown to accurately retain the fixture dynamics while successfully adding the test component dynamics through the usable frequency range of the shaker.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Delima, W.J., Jones, R., Dodgen, E., Ambrose, M.: A numerical approach to system model identification of random vibration test. In: Proceeding of 35th IMAC, Garden Grove, California (2017)

    Google Scholar 

  2. Allen, M.S., Mayes, R.L., Bergman, E.J.: Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections. J. Sound Vib. 329, 4891–4906 (2010)

    Article  Google Scholar 

  3. Mayes, R.L., Arviso, M.: Design studies for the transmission simulator method of experimental dynamic substructuring. In: International Seminar on Modal Analysis, Lueven, Belgium (2010)

    Google Scholar 

  4. Moldenhauer, B., Allen, M.S., DeLima, W.J., Dodgen, E.: Modeling an electrodynamic shaker using experimental substructuring. In: Proceedings of the 36th IMAC, Orlando, Florida (2018)

    Google Scholar 

  5. Dynamic Substructuring Wiki [Online]. http://substructure.engr.wisc.edu

  6. de Klerk, D., et al.: General framework for dynamic substructuring: history, review, and classification of techniques. AIAA J. 46, 1169–1181 (2008)

    Article  Google Scholar 

  7. Allen, M.S., Mayes, R.L.: Comparison of FRF and modal methods for combining experimental and analytical substructures. In: Proceedings of the 25th IMAC, Orlando, Florida (2007)

    Google Scholar 

  8. Roettgen, D.R., Allen, M.S., Mayes, R.L.: Ampair 600 wind turbine three-bladed assembly substructuring using the transmission simulator method. In: Sound and Vibration, November 2016

    Google Scholar 

  9. Kammer, D.C.: Sensor placement for on-orbit modal identification and correlation of large space structures. J. Guid. Control. Dyn. 14(2), 251–259 (1991)

    Article  Google Scholar 

  10. Allen, M.S., Ginsberg, J.H.: A global, single-input-multi-output (SIMO) implementation of the algorithm of mode isolation and applications to analytical and experimental data. Mech. Syst. Signal Process. 20, 1090–1111 (2006)

    Article  Google Scholar 

  11. Allen, M.S., Ginsberg, J.H.: Global, hybrid, MIMO implementation of the algorithm of mode isolation. In: Proceedings of the 23rd IMAC, Orlando, Florida (2005)

    Google Scholar 

  12. Allen, M., Kammer, D., Mayes, R.: Metrics for diagnosing negative mass and stiffness when uncoupling experimental and analytical substructures. J. Sound Vib. 331, 5435–5448 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Moldenhauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moldenhauer, B., Allen, M., DeLima, W.J., Dodgen, E. (2020). Using Hybrid Modal Substructuring with a Complex Transmission Simulator to Model an Electrodynamic Shaker. In: Linderholt, A., Allen, M., Mayes, R., Rixen, D. (eds) Dynamic Substructures, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12184-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12184-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12183-9

  • Online ISBN: 978-3-030-12184-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics