Mechanical Characterization and Numerical Modeling of High Density Polyethylene Pipes

  • Mehrzad TaherzadehboroujeniEmail author
  • Scott W. Case
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


The worldwide plastic pipe industry is predicted to experience a dramatic grow over the next decade. As a group of plastic pipes, high density polyethylene (HDPE) pipes are often employed because of their low-cost production, easy installation, and excellent long-term performance. However, due to their complicated semi-crystalline microstructure and nonlinear time-temperature dependent mechanical behavior, the mechanical characterization of HDPE pipes is very challenging and time consuming. In addition, during the manufacturing of HDPE pipes, the processing conditions (such as molecular orientation, cooling rate, and extrusion injection pressure) can introduce different complex microstructures into the material which yield different material properties. In this study, a robust mechanical characterization approach is developed to support numerical modeling of HDPE pipes. The mechanical tests are performed directly on as-manufactured pipe segments. The simulation results are compared with the experimental data for tensile and internal pressurization (burst) tests and a good agreement is observed.


Long-term hydrostatic strength HDPE pipe characterization Numerical modeling Accelerated method 


  1. 1.
    Hu, J., Li, Y., Chen, W., Zhao, B., Yang, D.: Effects of temperature and stress on creep properties of ethylene tetrafluoroethylene (ETFE) foils for transparent buildings. Polym. Test. 59, 268–276 (2017)CrossRefGoogle Scholar
  2. 2.
    Zhou, F., Hou, S., Qian, X., Chen, Z., Zheng, C., Xu, F.: Creep behavior and lifetime prediction of PMMA immersed in liquid scintillator. Polym. Test. 53, 323–328 (2016)CrossRefGoogle Scholar
  3. 3.
    Takahashi, Y., Tateiwa, T., Shishido, T., Masaoka, T., Kubo, K., Yamamoto, K.: Size and thickness effect on creep behavior in conventional and vitamin E-diffused highly crosslinked polyethylene for total hip arthroplasty. J. Mech. Behav. Biomed. Mater. 62, 399–406 (2016)CrossRefGoogle Scholar
  4. 4.
    Fatima, M., Mohamed, S., Mohamed, E.: Burst behavior of CPVC compared to HDPE thermoplastic polymer under a controlled internal pressure. Proc. Struct. Integrity. 3, 380–386 (2017)CrossRefGoogle Scholar
  5. 5.
    Moon, J., Bae, H., Song, J., Choi, S.: Algorithmic methods of reference-line construction for estimating long-term strength of plastic pipe system. Polym. Test. 56, 58–64 (2016)CrossRefGoogle Scholar
  6. 6.
    Zhang, Y., Jar, P.-Y.B.: Time-strain rate superposition for relaxation behavior of polyethylene pressure pipes. Polym. Test. 50, 292–296 (2016)CrossRefGoogle Scholar
  7. 7.
    Vakili-Tahami, F., Adibeig, M.R.: Using developed creep constitutive model for optimum design of HDPE pipes. Polym. Test. 63, 392–397 (2017)CrossRefGoogle Scholar
  8. 8.
    Taherzadehboroujeni, M., Kalhor, R., Fahs, G., Moore, R., Case, S.: Accelerated testing method to estimate the long-term hydrostatic strength of semi-crystalline plastic pipes. Polym. Eng. Sci. 60, (2019)Google Scholar
  9. 9.
    Kühl, A., Muñoz-Rojas, P.A., Barbieri, R., Benvenutti, I.J.: A procedure for modeling the nonlinear viscoelastoplastic creep of HDPE at small strains. Polym. Eng. Sci. 57, 144–152 (2017)CrossRefGoogle Scholar
  10. 10.
    Cheng, C., Widera, G.O.: Development of maximum secondary creep strain method for lifetime of HDPE pipes. J. Press. Vessel. Technol. 131, 021208 (2009)CrossRefGoogle Scholar
  11. 11.
    Guedes, R.M.: A viscoelastic model for a biomedical ultra-high molecular weight polyethylene using the time-temperature superposition principle. Polym. Test. 30, 294–302 (2011)CrossRefGoogle Scholar
  12. 12.
    Colak, O.U., Dusunceli, N.: Modeling viscoelastic and viscoplastic behavior of high density polyethylene (HDPE). J. Eng. Mater. Technol. 128, 572–578 (2006)CrossRefGoogle Scholar
  13. 13.
    Reis, J.M.L., Pacheco, L.J., da Costa Mattos, H.S.: Tensile behavior of post-consumer recycled high-density polyethylene at different strain rates. Polym. Test. 32, 338–342 (2013)CrossRefGoogle Scholar
  14. 14.
    Bilgin, O.: Modeling viscoelastic behavior of polyethylene pipe stresses. J. Mater. Civ. Eng. 26, 676–683 (2014)CrossRefGoogle Scholar
  15. 15.
    Taherzadeh, M., Baghani, M., Baniassadi, M., Abrinia, K., Safdari, M.: Modeling and homogenization of shape memory polymer nanocomposites. J. Compos. Part B Eng. 91, 36–43 (2016)CrossRefGoogle Scholar
  16. 16.
    Yang, F., Mousavie, A., Oh, T., Yang, T., Lu, Y., Farley, C., Bodnar, R., Niu, L., Qiao, R., Li, Z.: Sodium–sulfur flow battery for low‐cost electrical storage. J. Adv Energy Mater. 8, 1701991 (2018)CrossRefGoogle Scholar
  17. 17.
    Piavis, W., Turn, S., Mousavi, A.: Non-thermal gliding-arc plasma reforming of dodecane and hydroprocessed renewable diesel. Int J Hydrogen Energy. 40, 13295–13305 (2015)CrossRefGoogle Scholar
  18. 18.
    Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)CrossRefGoogle Scholar
  19. 19.
    Bauwens, J.: Yield condition and propagation of Lüders’ lines in tension–torsion experiments on poly (vinyl chloride). J. Polym. Sci. B Polym. Phys. 8, 893–901 (1970)CrossRefGoogle Scholar
  20. 20.
    Bauwens-Crowet, C., Bauwens, J.-C., Homès, G.: The temperature dependence of yield of polycarbonate in uniaxial compression and tensile tests. J. Mater. Sci. 7, 176–183 (1972)CrossRefGoogle Scholar
  21. 21.
    Bauwens-Crowet, C.: The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates. J. Mater. Sci. 8, 968–979 (1973)CrossRefGoogle Scholar
  22. 22.
    Haward, R., Thackray, G.: The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics. Proc. R. Soc. Lond. A. 302, 453–472 (1968)CrossRefGoogle Scholar
  23. 23.
    Richeton, J., Ahzi, S., Daridon, L., Rémond, Y.: A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. Polymer. 46, 6035–6043 (2005)CrossRefGoogle Scholar
  24. 24.
    Roetling, J.: Yield stress behaviour of polymethylmethacrylate. Polymer. 6, 311–317 (1965)CrossRefGoogle Scholar
  25. 25.
    Roetling, J.: Yield stress behaviour of isotactic polypropylene. Polymer. 7, 303–306 (1966)CrossRefGoogle Scholar
  26. 26.
    Roetling, J.: Yield stress behaviour of poly (ethyl methacrylate) in the glass transition region. Polymer. 6, 615–619 (1965)CrossRefGoogle Scholar
  27. 27.
    Truss, R., Clarke, P., Duckett, R., Ward, I.: The dependence of yield behavior on temperature, pressure, and strain rate for linear polyethylenes of different molecular weight and morphology. J. Polym. Sci. Polym. Phys. Ed. 22, 191–209 (1984)CrossRefGoogle Scholar
  28. 28.
    Truss, R., Duckett, R., Ward, I.: Effect of hydrostatic pressure on the yield and fracture of polyethylene in torsion. J. Mater. Sci. 16, 1689–1699 (1981)CrossRefGoogle Scholar
  29. 29.
    Bauwens-Crowet, C., Ots, J.-M., Bauwens, J.-C.: The strain-rate and temperature dependence of yield of polycarbonate in tension, tensile creep and impact tests. J. Mater. Sci. 9, 1197–1201 (1974)CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 2020

Authors and Affiliations

  1. 1.Department of Biomedical Engineering and MechanicsVirginia TechBlacksburgUSA
  2. 2.Macromolecules Innovation Institute, Virginia TechBlacksburgUSA

Personalised recommendations