Skip to main content

SuperDense Coding Step by Step

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 70))

Abstract

Scholars of quantum computing all become familiar with Alice and Bob when learning about superdense coding and entanglement. However, in every research book and video that we found, the assumption is made that the student will automatically understand how those two classical bits at the end come to their values when they started as two qubits. This vagueness was unavoidable when quantum computers were purely theoretical. After exhaustive search of every quantum superdense coding Bob and Alice example in the research literature since late 2017, we found not one that presented evidence from a real quantum computer. However, moving from theory to practice is necessary. Today, using results from a real IBM Q Experience quantum computer, we illustrate each step of the Bob and Alice qubit journey and make it all crystal clear.

Thanks to the IBM Faculty Award that made this research possible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

    Google Scholar 

  2. Zeilinger, A.: Quantum teleportation, onwards and upwards. Nat. Phys. 14(1), 3 (2018)

    Article  Google Scholar 

  3. Ekert, A.: Quantum cryptography: the power of independence. Nat. Phys. 14(2), 114 (2018)

    Article  Google Scholar 

  4. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  5. Rieffel, E., Polak, W.: An introduction to quantum computing for non-physicists. ACM Comput. Surv. (CSUR) 32(3), 300–335 (2000)

    Article  Google Scholar 

  6. Nielsen, M.: Superdense Coding: How to Send Two Bits Using One Qubit (2010). Available at https://youtu.be/w5rCn593Dig

  7. Westfall, L., Leider, A.: Teaching quantum computing. In: Future Technologies Conference (2018) (in press)

    Google Scholar 

  8. Nagy, M., Nagy, N.: An information-theoretic perspective on the quantum bit commitment impossibility theorem. Entropy 20(3), 193 (2018)

    Article  MathSciNet  Google Scholar 

  9. Del Santo, F., Dakić, B.: Two-way communication with a single quantum particle. Phys. Rev. Lett. 120(6), 060503 (2018)

    Article  Google Scholar 

  10. Horodecki, P., Horodecki, M., Horodecki, R.: Zero-knowledge convincing protocol on quantum bit is impossible. Quantum 1, 41 (2017)

    Article  Google Scholar 

  11. Massa, F., Moqanaki, A., Del Santo, F., Dakic, B., Walther, P.: Experimental two-way communication with one photon. (2018) arXiv preprint arXiv:1802.05102

  12. Simon, G.K., Huff, B.K., Meier, W.M., Mailloux, L.O., Harrell, L.E.: Quantification of the impact of photon distinguishability on measurement-device-independent quantum key distribution. Electronics 7(4), 49 (2018)

    Article  Google Scholar 

  13. Oppliger, R.: Disillusioning alice and bob. IEEE Secur. Priv. 5, 82–84 (2017)

    Article  Google Scholar 

  14. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  15. Schröedinger, E.: The present situation in quantum mechanics. Naturwissenschaften 23, 844–849 (1935)

    Article  Google Scholar 

  16. Podoshvedov, S.A.: Quantum teleportation of unknown qubit beyond bell states formalism. (2018) arXiv preprint arXiv:1801.09452

  17. Wang, K., Yu, X.-T., Cai, X.-F., Zhang, Z.-C.: Probabilistic teleportation of arbitrary two-qubit quantum state via non-symmetric quantum channel. Entropy 20(4), 238 (2018)

    Article  Google Scholar 

  18. Anaconda, Inc.: (2018). https://www.anaconda.com/

  19. IBM. Q Experience.: (2018). https://quantumexperience.ng.bluemix.net/

  20. Python Software Foundation.: (2018). https://www.python.org/

  21. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly language. (2017) arXiv preprint arXiv:1707.03429

  22. Open Source Quantum Information Science Kit.: (2018). https://qiskit.org/

  23. QISKit GitHub.: (2018). https://github.com/QISKit/

  24. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    Article  Google Scholar 

  25. Tappert, C.: Lecture Slides from Quantum Computing Course at Pace University (2018). Available at http://csis.pace.edu/ctappert/cs837-18spring/index.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avery Leider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Westfall, L., Leider, A. (2020). SuperDense Coding Step by Step. In: Arai, K., Bhatia, R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-12385-7_28

Download citation

Publish with us

Policies and ethics