Skip to main content

A Secure Scalable Life-Long Learning Based on Multiagent Framework Using Cloud Computing

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 70))

Included in the following conference series:

  • 1510 Accesses

Abstract

The major problem on the road to artificial intelligence is the development of lifelong learning systems. They have the ability to learn new concepts incrementally overtime. They are also able to allocate required resources dynamically without human intervention and are able to store data securely. In this work we have extended the incremental classifier and representation learning method known as iCaRL to meet this criterion. The proposed solution is able to learn strong classifiers and a data representation simultaneously. It is able to allocate an optimal scaling plan to meet its resource requirements without human intervention. It securely stores propriety image data by using state of the art interplanetary file system and block chain technology. Finally, it is able to focus on object of interests in an image using attention network. We have shown by experiments on CIFAR-100 and Image net 2012 that it performs better in terms of accuracy than the existing iCaRL system while satisfying criteria of lifelong learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  2. Amazon: Cloud computing. [Online]. Available: https://aws.amazon.com/what-is-cloud-computing/

  3. Wikipedia: Cryptography. [Online]. Available: https://en.wikipedia.org/wiki/Cryptography

  4. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. MIT Press Journals (2017)

    Google Scholar 

  5. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, L., Wang, G., Cai, J., Chen, T.: Recent advances in convolutional neural networks. In: Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  6. Convolutional neural networks for visual recognition. [Online]. Available: http://cs231n.github.io/convolutional-networks/

  7. Yoo, D., Park, S., Lee, J.Y., Paek, A.S., So Kweon, I.: AttentionNet: aggregating weak directions for accurate object detection. In: Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  8. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In Proceedings of British Machine Vision Conference (BMVC) (2014)

    Google Scholar 

  9. Kester, Q.A., Nana, L., Pascu, A.C., Gire, S., Eghan, J.M., Quaynor, N.N.: A cryptographic technique for security of medical images in health information systems. Procedia Comput. Sci. 58, 538–543 (2015)

    Article  Google Scholar 

  10. Taitsman, J.K., Grimm, C.M., Agrawal, S.: Protecting patient privacy and data security. In: Perspective, pp. 977–979 (2013)

    Article  Google Scholar 

  11. The great chain of being sure about things, 31 Oct 2015. [Online]. Available: https://www.economist.com/briefing/2015/10/31/the-great-chain-of-being-sure-about-things. Accessed 2017

  12. Benet, J.: IPFS—content addressed, versioned, P2P file system

    Google Scholar 

  13. Rouse, M.: Asymmetric cryptography. [Online]. Available: https://searchsecurity.techtarget.com/definition/asymmetric-cryptography

  14. Liu, X., Gao, C., Li, P.: A comparative analysis of support vector machines and extreme learning machines. Neural Netw. 33, 58–66 (2012)

    Article  Google Scholar 

  15. Bucurica, M., Dogaru, R., Dogaru, I.: A comparison of extreme learning machine and support vector machine classifiers. In IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania (2015)

    Google Scholar 

  16. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  17. Liu, Z., Loo, C.K., Masuyama, N., Pasupa, K.: Multiple steps time series prediction by a novel recurrent kernel extreme learning machine approach. In International Conference on Information Technology and Electrical Engineering (2017)

    Google Scholar 

  18. Ans, B., Rousset, S.: Avoiding catastrophic forgetting by coupling two reverberating neural networks. C. R. Acad. Sci. 320(12), 989–997 (1997)

    Article  Google Scholar 

  19. French, R.M.: Catastrophic interference in connectionist networks: can it be predicted, can it be prevented? In: Conference on Neural Information Processing Systems (NIPS) (1993)

    Google Scholar 

  20. French, R.M.: Catastrophic forgetting in connectionist networks. Trends in Cogn. Sci. 3(4), 128–135 (1999)

    Article  Google Scholar 

  21. Robins, A.V.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci. 7(2), 123–146 (1995)

    Article  Google Scholar 

  22. Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Distance-based image classification: generalizing to new classes at near-zero cost. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2624–2637 (2013)

    Article  Google Scholar 

  23. Kuzborskij, I., Orabona, F., Caputo, B.: From N to N+1: multiclass transfer incremental learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3358–3365 (2013)

    Google Scholar 

  24. Polikar, R., Upda, L., Upda, S.S., Honavar, V.: Learn++: an incremental learning algorithm for supervised neural networks. IEEE Trans. Syst. 31(4), 497–508 (2001)

    Google Scholar 

  25. Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector machine learning. In: Proceedings of the 13th International Conference on Neural Information Processing Systems, Denver, CO (2000)

    Google Scholar 

  26. Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Metric learning for large scale image classification: generalizing to new classes at near-zero cost. In: European Conference on Computer Vision (ECCV) (2012)

    Google Scholar 

  27. Ristin, M., Guillaumin, M., Gall, J., Van Gool, L.: Incremental learning of NCM forests for large-scale image classification. In: Conference on Computer Vision and Pattern (2014)

    Google Scholar 

  28. Royer, A., Lampert, C.H.: Classifier adaptation at prediction time. In: Conference on Computer Vision and Pattern (2015)

    Google Scholar 

  29. Li, F., Wechsler, H.: Open set face recognition using transduction. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) (2005)

    Google Scholar 

  30. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Towards open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 36 (2013)

    Google Scholar 

  31. Bendale, A., Boult, T.: Towards open world recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  32. Muhlbaier, M.D., Topalis, A., Polikar, R.: Learn++.NC: combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes. IEEE Trans. Neural Netw. 20(1) (2009)

    Article  Google Scholar 

  33. Polikar, R., Upda, L., Upda, S.S., Honavar, V.: Learn++: an incremental learning algorithm for supervised neural networks. IEEE Trans. Syst. Man Cybern. 31(4) (2001)

    Article  Google Scholar 

  34. Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute based classification for zero-shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) (2013)

    Google Scholar 

  35. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. (2013)

    Google Scholar 

  36. Li, Z., Hoiem, D.: Learning without forgetting. In: Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  37. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Crossstitch networks for multi-task learning. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  38. Saxena, S., Verbeek, J.: Convolutional neural fabrics. In: Conference on Neural Information Processing Systems (2016)

    Google Scholar 

  39. Jung, H., Ju, J., Jung, M., Kim, J.: Less-forgetting learning in deep neural networks. Learning (2016)

    Google Scholar 

  40. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D., Hadsell, R.: Overcoming catastrophic forgetting in neural networks. Learning (2016)

    Google Scholar 

  41. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. Machine Learning (2015)

    Google Scholar 

  42. Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., Zhang, Z., Fu, Y.: Incremental classifier learning with generative adversarial networks. In: Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  43. Xiao, T., Zhang, J., Yang, K., Peng, Y., Zhang, Z.: Error-driven incremental learning in deep convolutional neural network for large-scale image classification. In: ACM Multimedia (2014)

    Google Scholar 

  44. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient based learning applied to document recognition. In: Proceedings of the IEEE (1998)

    Google Scholar 

  45. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)

    Google Scholar 

  46. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115 (2015)

    Article  MathSciNet  Google Scholar 

  47. Mnih, V., Heess, N., Graves, A.: Recurrent models of visual attention. In: NIPS (2014)

    Google Scholar 

Download references

Acknowledgements

We would like to extend our acknowledgements to the UM Grand Challenge Project ICT Project No GC003A-14HTM for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loo Chu Kiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tahir, G.A., Abrar, S., Kiong, L.C. (2020). A Secure Scalable Life-Long Learning Based on Multiagent Framework Using Cloud Computing. In: Arai, K., Bhatia, R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-12385-7_31

Download citation

Publish with us

Policies and ethics