Skip to main content

Visible Light Communication Security Vulnerabilities in Multiuser Network: Power Distribution and Signal to Noise Ratio Analysis

  • Conference paper
  • First Online:
  • 1337 Accesses

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 69))

Abstract

In the near future, Visible Light Communication (VLC) is expected to be used in multiple environments which were due to radio frequency RF congestion and health limitations, RF should not be employed. VLC is a combination of optical wireless communications and illumination. Due to the misconception that VLC-based communications cannot be eavesdropped on by malicious attacker since light does not penetrate through solid objects like walls, VLC security and privacy are areas that have been hardly studied. In this work, we study various techniques for physical layer security performance of a VLC-based communication. Then we propose a new VLC framework to defend against eavesdropping attacks. Three-step process was followed to achieve this aim. First implementing more APs in multiuser VLC network, then reducing the semi-angle of LED and, finally using the protected zone around the AP where eavesdroppers are restricted. The performance is measured in terms of the received optical power and SNR. The results of the simulations indicate that VLC secrecy performance can be enhanced using the proposed model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Komine, T., Nakagawa, M.: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004)

    Article  Google Scholar 

  2. Dimitrov, S., Haas, H.: Principles of LED light communications: towards networked Li-Fi. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  3. Haas, H., Yin, L., Wang, Y., Chen, C.: What is LiFi? J. Light. Technol. 34(6), 1533–1544 (2016)

    Article  Google Scholar 

  4. Basnayaka, D.A., Haas, H.: Hybrid RF and VLC systems: improving user data rate performance of VLC systems. In: IEEE Vehicular Technology Conference, vol. 2015 (2015)

    Google Scholar 

  5. Shaaban, R., Faruque, S.: A survey of indoor visible light communication power distribution and color shift keying transmission. In: IEEE International Conference on Electro Information Technology, pp. 149–153 (2017)

    Google Scholar 

  6. IEEE Computer Society: IEEE Standard for Local and metropolitan area networks - Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Std 802.15.7-2011, vol. 1, no. September, pp. 1–286 (2011)

    Google Scholar 

  7. Mostafa, A., Lampe, L.: Enhancing the security of VLC links: physical-layer approaches. In: 2015 IEEE Summer Topicals Meeting Series, SUM 2015, pp. 39–40 (2015)

    Google Scholar 

  8. Mostafa, A., Lampe, L.: Physical-layer security for MISO visible light communication channels. IEEE J. Sel. Areas Commun. 33(9), 1806–1818 (2015)

    Article  Google Scholar 

  9. Ucar, S., Ergen, S.C., Ozkasap, O.: Multihop-cluster-based IEEE 802.11p and LTE hybrid architecture for VANET safety message dissemination. IEEE Trans. Veh. Technol. 65(4), 2621–2636 (2016)

    Article  Google Scholar 

  10. Ucar, S., Ergen, S.C., Ozkasap, O.: Security vulnerabilities of IEEE 802.11p and visible light communication based platoon. In: 2016 IEEE Vehicular Networking Conference, pp. 1–4 (2016)

    Google Scholar 

  11. Emara, K.: Safety-aware location privacy in VANET: evaluation and comparison. IEEE Trans. Veh. Technol. 66(12), 10718–10731 (2017)

    Article  Google Scholar 

  12. ETSI: ETSI EN 302 637-3 Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service, Etsi, vol. 1, pp. 1–73 (2014)

    Google Scholar 

  13. Koscher, K., et al.: Experimental security analysis of a modern automobile. In: Proceedings - IEEE Symposium on Security and Privacy, pp. 447–462 (2010)

    Google Scholar 

  14. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

    Article  MathSciNet  Google Scholar 

  15. Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978)

    Article  MathSciNet  Google Scholar 

  16. Araki, T., Suzuki, T.: Fuzzy timing passwords for providing easy user authentication to disable persons and their application to visible light communication. In: World Automation Congress (WAC), pp. 1–5 (2012)

    Google Scholar 

  17. Zhang, B., Ren, K., Xing, G., Fu, X., Wang, C.: SBVLC: secure barcode-based visible light communication for smartphones. IEEE Trans. Mob. Comput. 15(2), 432–446 (2016)

    Article  Google Scholar 

  18. Mostafa, A., Lampe, L.: Securing visible light communications via friendly jamming. In: 2014 IEEE Globecom Workshops, GC Wkshps 2014, pp. 524–529 (2014)

    Google Scholar 

  19. Mostafa, A., Lampe, L.: Physical-layer security for indoor visible light communications. In: 2014 IEEE International Conference on Communications, ICC 2014, pp. 3342–3347 (2014)

    Google Scholar 

  20. Haenggi, M.: The secrecy graph and some of its properties. In: IEEE International Symposium on Information Theory - Proceedings, pp. 539–543 (2008)

    Google Scholar 

  21. Pinto, P.C., Barros, J., Win, M.Z.: Secure communication in stochastic wireless networks—part i: connectivity. IEEE Trans. Inf. Forensics Secur. 7(1), 125–138 (2012)

    Article  Google Scholar 

  22. Pinto, P.C., Barros, J., Win, M.Z.: Secure communication in stochastic wireless networks - Part II: maximum rate and collusion. IEEE Trans. Inf. Forensics Secur. 7(1 Part 2), 139–147 (2012)

    Article  Google Scholar 

  23. Koyluoglu, O.O., Koksal, C.E., El Gamal, H.: On secrecy capacity scaling in wireless networks. IEEE Trans. Inf. Theory 58(5), 3000–3015 (2012)

    Article  MathSciNet  Google Scholar 

  24. Zhou, X., Ganti, R.K., Andrews, J.G., Hjørungnes, A.: On the throughput cost of physical layer security in decentralized wireless networks. IEEE Trans. Wirel. Commun. 10(8), 2764–2775 (2011)

    Article  Google Scholar 

  25. Wang, H., Zhou, X., Reed, M.C.: Physical layer security in cellular networks: a stochastic geometry approach. IEEE Trans. Wirel. Commun. 12(6), 2776–2787 (2013)

    Article  Google Scholar 

  26. Ma, H., Lampe, L., Hranilovic, S.: Coordinated broadcasting for multiuser indoor visible light communication systems. IEEE Trans. Commun. 63(9), 3313–3324 (2015)

    Article  Google Scholar 

  27. Lapidoth, A., Moser, S.M., Wigger, M.A.: On the capacity of free-space optical intensity channels. IEEE Trans. Inf. Theory 55(10), 4449–4461 (2009)

    Article  MathSciNet  Google Scholar 

  28. Wang, J.B., Hu, Q.S., Wang, J., Chen, M., Wang, J.Y.: Tight bounds on channel capacity for dimmable visible light communications. Light. Technol. J. 31(23), 3771–3779 (2013)

    Article  Google Scholar 

  29. Chaaban, A., Morvan, J.M., Alouini, M.S.: Free-space optical communications: capacity bounds, approximations, and a new sphere-packing perspective. IEEE Trans. Commun. 64(3), 1176–1191 (2016)

    Article  Google Scholar 

  30. Dimitrov, S., Haas, H.: Information rate of OFDM-based optical wireless communication systems with nonlinear distortion. J. Light. Technol. 31(6), 918–929 (2013)

    Article  Google Scholar 

  31. Mostafa, A., Lampe, L.: Optimal and robust beamforming for secure transmission in MISO visible-light communication links. IEEE Trans. Sig. Process. 64(24), 6501–6516 (2016)

    Article  MathSciNet  Google Scholar 

  32. Pan, G., Ye, J., Ding, Z.: On secure VLC systems with spatially random terminals. IEEE Commun. Lett. 21(3), 492–495 (2017)

    Article  Google Scholar 

  33. Classen, J., Chen, J., Steinmetzer, D., Hollick, M., Knightly, E.: The spy next door: eavesdropping on high throughput visible light communications. In: 2nd International Workshop on Visible Light Communications Systems, VLCS 2015, pp. 9–14 (2015)

    Google Scholar 

  34. Yin, L., Haas, H.: Physical-layer security in multiuser visible light communication networks. IEEE J. Sel. Areas Commun. 36(1), 162–174 (2018)

    Article  Google Scholar 

  35. Liu, X., Wei, X., Guo, L., Liu, Y., Zhou, Y.: A new eavesdropping-resilient framework for indoor visible light communication. In: Proceedings of 2016 IEEE Global Communications Conference, GLOBECOM 2016 (2016)

    Google Scholar 

  36. Emara, K., Woerndl, W., Schlichter, J.: Vehicle tracking using vehicular network beacons. In: 2013 IEEE 14th International Symposium “A World Wireless, Mobile Multimedia Networks”, pp. 1–6 (2013)

    Google Scholar 

  37. Wiedersheim, B., Ma, Z., Kargl, F., Papadimitratos, P.: Privacy in inter-vehicular networks: why simple pseudonym change is not enough. In: 7th International Conference on Wireless On-Demand Network Systems and Services, WONS 2010, pp. 176–183 (2010)

    Google Scholar 

  38. Sampigethaya, K., Li, M., Huang, L., Poovendran, R.: AMOEBA: robust location privacy scheme for VANET. IEEE J. Sel. Areas Commun. 25(8), 1569–1589 (2007)

    Article  Google Scholar 

  39. Freudiger, J., Raya, M., Félegyházi, M., Papadimitratos, P., Hubaux, J.-P.: Mix-zones for location privacy in vehicular networks. In: ACM Workshop Wireless Networking Intelligent Transportation Systems, vol. 51, pp. 1–7 (2007)

    Google Scholar 

  40. Buttyán, L., Holczer, T., Weimerskirch, A., Whyte, W.: SLOW: a practical pseudonym changing scheme for location privacy in VANETs. In: 2009 IEEE Vehicular Networking Conference, VNC 2009 (2009)

    Google Scholar 

  41. Palanisamy, B., Liu, L.: Attack-resilient mix-zones over road networks: architecture and algorithms. IEEE Trans. Mob. Comput. 14(3), 495–508 (2015)

    Article  Google Scholar 

  42. Yu, R., Kang, J., Huang, X., Xie, S., Zhang, Y., Gjessing, S.: MixGroup: accumulative pseudonym exchanging for location privacy enhancement in vehicular social networks. IEEE Trans. Dependable Secur. Comput. 13(1), 93–105 (2016)

    Article  Google Scholar 

  43. Papadimitratos, P., Calandriello, G., Hubaux, J.-P., Lioy, A.: Impact of vehicular communications security on transportation safety. In: IEEE Conference Computer Communications Workshops, IEEE INFOCOM 2008, vol. 00, no. c, pp. 1–6 (2008)

    Google Scholar 

  44. Lefèvre, S., Petit, J., Bajcsy, R., Laugier, C., Kargl, F.: Impact of V2X privacy strategies on intersection collision avoidance systems. In: IEEE Vehicular Networking Conference, VNC 2013, pp. 71–78 (2013)

    Google Scholar 

  45. Lu, H., Su, Z., Yuan, B.: SNR and optical power distribution in an indoor visible light communication system, pp. 1063–1067 (2014)

    Google Scholar 

  46. Romero-Zurita, N., McLernon, D., Ghogho, M., Swami, A.: PHY layer security based on protected zone and artificial noise. IEEE Sig. Process. Lett. 20(5), 487–490 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana Shaaban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaaban, R., Ranganathan, P., Faruque, S. (2020). Visible Light Communication Security Vulnerabilities in Multiuser Network: Power Distribution and Signal to Noise Ratio Analysis. In: Arai, K., Bhatia, R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-12388-8_1

Download citation

Publish with us

Policies and ethics