Skip to main content

Enabling Pedestrian Safety Using Computer Vision Techniques: A Case Study of the 2018 Uber Inc. Self-driving Car Crash

  • Conference paper
  • First Online:
Book cover Advances in Information and Communication (FICC 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 69))

Included in the following conference series:

Abstract

Human lives are important. The decision to allow self-driving vehicles operate on our roads carries great weight. This has been a hot topic of debate between policy-makers, technologists and public safety institutions. The recent Uber Inc. self-driving car crash, resulting in the death of a pedestrian, has strengthened the argument that autonomous vehicle technology is still not ready for deployment on public roads. In this work, we analyze the Uber car crash and shed light on the question, “Could the Uber Car Crash have been avoided?”. We apply state-of-the-art Computer Vision models to this highly practical scenario. More generally, our experimental results are an evaluation of various image enhancement and object recognition techniques for enabling pedestrian safety in low-lighting conditions using the Uber crash as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    VentureBeat - Uber self-driving car crash in Tempe, Arizona. Youtube Video: https://youtu.be/XtTB8hTgHbM.

References

  1. Association for Safe International Road Travel: Annual global road crash statistics (2013). www.asirt.org

  2. Blincoe, L.J., Miller, T.R., Zaloshnja, E., Lawrence, B.A.: The economic and societal impact of motor vehicle crashes, 2010. (Revised) (report no. dot hs 812 013). National Highway Traffic Safety Administration, Washington, DC (2015)

    Google Scholar 

  3. Anderson, J.M., Nidhi, K., Stanley, K.D., Sorensen, P., Samaras, C., Oluwatola, O.A.: Autonomous Vehicle Technology: A Guide for Policymakers. Rand Corporation (2014)

    Google Scholar 

  4. Fagnant, D.J., Kockelman, K.: Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp. Res. Part A: Policy Pract. 77, 167–181 (2015)

    Google Scholar 

  5. Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. Part A: Policy Pract. 94, 182–193 (2016)

    Google Scholar 

  6. Shashua, A.: Experience counts, particularly in safety-critical areas (2018). https://newsroom.intel.com/editorials/experience-counts-particularly-safety-critical-areas/

  7. Benenson, R., Mathias, M., Timofte, R., Van Gool, L.: Pedestrian detection at 100 frames per second. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2903–2910. IEEE (2012)

    Google Scholar 

  8. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

    Article  Google Scholar 

  9. Dollr, P., Tu, Z., Perona, P., Belongie, S.J.: Integral channel features. In: Cavallaro, A., Prince, S., Alexander, D.C. (eds.) BMVC, pp. 1–11. British Machine Vision Association (2009)

    Google Scholar 

  10. Sermanet, P., Kavukcuoglu, K., Chintala, S., LeCun, Y.: Pedestrian detection with unsupervised multi-stage feature learning. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3626–3633. IEEE (2013)

    Google Scholar 

  11. Zhang, S., Bauckhage, C., Cremers, A.B.: Informed Haar-like features improve pedestrian detection. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 947–954. IEEE (2014)

    Google Scholar 

  12. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893, June 2005

    Google Scholar 

  13. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)

    Article  Google Scholar 

  14. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  15. Benenson, R., Omran, M., Hosang, J.H., Schiele, B.: Ten years of pedestrian detection, what have we learned? CoRR, abs/1411.4304 (2014)

    Google Scholar 

  16. Paisitkriangkrai, S., Shen, C., Van Den Hengel, A.: Strengthening the effectiveness of pedestrian detection with spatially pooled features. In: European Conference on Computer Vision, pp. 546–561. Springer, Heidelberg (2014)

    Google Scholar 

  17. Liu, F., Picard, R.W.: Finding periodicity in space and time. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 376–383, January 1998

    Google Scholar 

  18. Polana, R., Nelson, R.: Detecting activities. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2–7, June 1993

    Google Scholar 

  19. Cutler, R., Davis, L.S.: Robust real-time periodic motion detection, analysis, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 781–796 (2000). Aug

    Article  Google Scholar 

  20. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. Int. J. Comput. Vis. 63(2), 153–161 (2005). July

    Article  Google Scholar 

  21. Barinova, O., Lempitsky, V., Kholi, P.: On detection of multiple object instances using hough transforms. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1773–1784 (2012)

    Article  Google Scholar 

  22. Sharma, V., Davis, J.W.: Integrating appearance and motion cues for simultaneous detection and segmentation of pedestrians. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp.1–8. IEEE (2007)

    Google Scholar 

  23. Spinello, L., Triebel, R., Siegwart, R.: Multimodal detection and tracking of pedestrians in urban environments with explicit ground plane extraction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 1823–1829. IEEE (2008)

    Google Scholar 

  24. Chidiac, H., Ziou, D.: Classification of image edges. Vis. Interface 99, 17–24 (1999)

    Google Scholar 

  25. Clavier, E., Clavier, S., Labiche, J.: Image sorting and image classification: a global approach. In: Proceedings of the Fifth International Conference on Document Analysis and Recognition, ICDAR 1999, pp. 123–126. IEEE (1999)

    Google Scholar 

  26. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison-Wesley, Boston (1992)

    Google Scholar 

  27. Bovik, A.C.: Handbook of Image and Video Processing. Academic Press, Cambridge (2010)

    MATH  Google Scholar 

  28. Garcia, P., Pla, F., Gracia, I.: Detecting edges in colour images using dichromatic differences. In: Seventh International Conference on Image Processing And Its Applications (Conf. Publ. No. 465), vol. 1, pp. 363–367, July 1999

    Google Scholar 

  29. Canny, J.: A computational approach to edge detection. In: Readings in Computer Vision, pp. 184–203. Elsevier, Amsterdam (1987)

    Google Scholar 

  30. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012). April

    Article  Google Scholar 

  31. Wojek, C., Walk, S., Roth, S., Schiele, B.: Monocular 3D scene understanding with explicit occlusion reasoning. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1993–2000. IEEE (2011)

    Google Scholar 

  32. Mathias, M., Benenson, R., Timofte, R., Van Gool, L., Handling occlusions with Franken-classifiers. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1505–1512. IEEE (2013)

    Google Scholar 

  33. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  34. Ouyang, W., Wang, X.: A discriminative deep model for pedestrian detection with occlusion handling. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3258–3265. IEEE (2012)

    Google Scholar 

  35. Ouyang, W., Zeng, X., Wang, X.: Modeling mutual visibility relationship in pedestrian detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3222–3229. IEEE (2013)

    Google Scholar 

  36. Ouyang, W., Wang, X.: Joint deep learning for pedestrian detection. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 2056–2063. IEEE (2013)

    Google Scholar 

  37. Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 1, pp. 90–97. IEEE (2005)

    Google Scholar 

  38. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  39. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. CoRR, abs/1612.08242 (2016)

    Google Scholar 

  40. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788, June 2016

    Google Scholar 

  41. Girshick, R.: Fast R-CNN. arXiv preprint arXiv:1504.08083 (2015)

  42. Saini, S., Nikhil, S., Konda, K.R., Bharadwaj, H.S., Ganeshan, N.: An efficient vision-based traffic light detection and state recognition for autonomous vehicles. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 606–611, June 2017

    Google Scholar 

  43. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, abs/1311.2524 (2013)

    Google Scholar 

  44. Zhang, L., Lin, L., Liang, X., He, K.: Is faster R-CNN doing well for pedestrian detection? In: European Conference on Computer Vision, pp. 443–457. Springer, Heidelberf (2016)

    Chapter  Google Scholar 

  45. Li, J., Liang, X., Shen, S.M., Tingfa, X., Feng, J., Yan, S.: Scale-aware fast R-CNN for pedestrian detection. IEEE Trans. Multimed. 20(4), 985–996 (2018)

    Google Scholar 

  46. Tian, Y., Luo, P., Wang, X., Tang, X.: Deep learning strong parts for pedestrian detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1904–1912 (2015)

    Google Scholar 

  47. Tian, Y., Luo, P., Wang, X., Tang, X.: Pedestrian detection aided by deep learning semantic tasks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5079–5087 (2015)

    Google Scholar 

  48. Appel, R., Fuchs, T., Dollár, P., Perona, P.: Quickly boosting decision trees–pruning underachieving features early. In: International Conference on Machine Learning, pp. 594–602 (2013)

    Google Scholar 

  49. Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-grained category detection. In: European Conference on Computer Vision, pp. 834–849. Springer, Heidelberg (2014)

    Google Scholar 

  50. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile vision system for robust multi-person tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  51. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 304–311, June 2009

    Google Scholar 

  52. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Rob. Res. 32(11), 1231–1237 (2013). September

    Article  Google Scholar 

  53. Wojek, C., Walk, S., Schiele, B.: Multi-cue onboard pedestrian detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. pages 794–801. IEEE (2009)

    Google Scholar 

  54. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  55. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Sig. Process. Syst. Sig. Image Video Technol. 38(1), 35–44 (2004)

    Article  Google Scholar 

  56. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)

    Article  Google Scholar 

  57. Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  58. Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. CoRR, abs/1511.03995 (2015)

    Google Scholar 

  59. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graph. 36(4), 1–12 (2017)

    Article  Google Scholar 

  60. Shen, L., Yue, Z., Feng, F., Chen, Q., Liu, S., Ma, J.: MSR-Net: low-light image enhancement using deep convolutional network. CoRR, abs/1711.02488 (2017)

    Google Scholar 

  61. Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  62. Cai, B., Xiangmin, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  63. Xu, Y., Xu, L., Li, D., Wu, Y.: Pedestrian detection using background subtraction assisted support vector machine. In: 2011 11th International Conference on Intelligent Systems Design and Applications, pp. 837–842, November 2011

    Google Scholar 

  64. KaewTraKulPong, P., Bowden, R.: An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection, pp. 135–144. Springer, Boston (2002)

    Chapter  Google Scholar 

  65. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31, August 2004

    Google Scholar 

  66. Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006). May

    Article  Google Scholar 

  67. Shadeed, W.G., Abu-Al-Nadi, D.I., Mismar, M.J.: Road traffic sign detection in color images. In: Proceedings of the 2003 10th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2003, vol. 2, pp. 890–893. IEEE (2003)

    Google Scholar 

  68. Broggi, A., Cerri, P., Medici, P., Porta, P.P., Ghisio, G.: Real time road signs recognition. In: 2007 IEEE Intelligent Vehicles Symposium, pp. 981–986. IEEE (2007)

    Google Scholar 

  69. Tarel, J.-P., Hautiere, N., Caraffa, L., Cord, A., Halmaoui, H., Gruyer, D.: Vision enhancement in homogeneous and heterogeneous fog. IEEE Intell. Transp. Syst. Mag. 4(2), 6–20 (2012)

    Article  Google Scholar 

  70. Singh, S., Godara, A., Gaurav, G.: Detection of partial invisible objects in images using histogram equalization. Int. J. Comput. Appl. 85(9), 40–44 (2014). January

    Google Scholar 

  71. Pisano, E.D., Zong, S., Hemminger, B.M., DeLuca, M., Johnston, R.E., Muller, K., Braeuning, M.P., Pizer, S.M.: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J. Digit. Imaging 11(4), 193 (1998)

    Article  Google Scholar 

  72. Tian, Q.M., Luo, Y.P., Hu, D.C.: Nighttime pedestrian detection with a normal camera using SVM classifier. In: Third International Conference on Image and Graphics (ICIG 2004), pp. 116–119. IEEE (2004)

    Google Scholar 

  73. Chang, W.-Y., Chiu, C.-C., Yang, J.-H.: Block-based connected-component labeling algorithm using binary decision trees. Sensors 15(9), 23763–23787 (2015)

    Article  Google Scholar 

  74. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new image contrast enhancement algorithm using exposure fusion framework. In: International Conference on Computer Analysis of Images and Patterns, pp. 36–46. Springer, Heidelberg (2017)

    Chapter  Google Scholar 

  75. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new low-light image enhancement algorithm using camera response model. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 3015–3022, October 2017

    Google Scholar 

  76. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  77. Wu, B., Iandola, F., Jin, P.H., Keutzer, K.: SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. arXiv preprint arXiv:1612.01051 (2016)

  78. Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., Urtasun, R.: MultiNet: real-time joint semantic reasoning for autonomous driving. arXiv preprint arXiv:1612.07695 (2016)

  79. Alvar, S.R., Bajić, I.V.: MV-YOLO: motion vector-aided tracking by semantic object detection. arXiv preprint arXiv:1805.00107 (2018)

  80. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. CoRR, abs/1512.02325 (2015)

    Google Scholar 

  81. Du, X., El-Khamy, M., Lee, J., Davis, L.: Fused DNN: a deep neural network fusion approach to fast and robust pedestrian detection. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 953–961. IEEE (2017)

    Google Scholar 

  82. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. arXiv preprint arXiv:1708.02002 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Kohli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kohli, P., Chadha, A. (2020). Enabling Pedestrian Safety Using Computer Vision Techniques: A Case Study of the 2018 Uber Inc. Self-driving Car Crash. In: Arai, K., Bhatia, R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-12388-8_19

Download citation

Publish with us

Policies and ethics