Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 201))

  • 442 Accesses

Abstract

This chapter introduces the main aspects of the book. It presents the history and important aspects of fault-tolerant control, fault-tolerant design and the concept of fault-tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EN 62061:2005 (Safety of Machinery—functional Safety of safety-related Electrical, Electronic and Programmable Electronic Control Systems )

    Google Scholar 

  2. EN ISO 13849-1:2008 (Safety of machinery—safety-related parts of control system—general principles for design)

    Google Scholar 

  3. Andreasen, M.M., Hansen, T.C., Cash, C.P.: Conceptual Design. Mindset and Models. Springer, Interpretations (2015)

    Book  Google Scholar 

  4. Banh, T.T., Lee, D.: Multi-material topology optimization design for continuum structures with crack patterns. Compos, Struct (2017)

    Google Scholar 

  5. Benosman, M.: A survey of some recent results on nonlinear fault tolerant control. Math. Probl. Eng. 586169, (2010)

    Google Scholar 

  6. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, New York (2016)

    Book  MATH  Google Scholar 

  7. Camba, J.D., Contero, M., Companyc, P., Prez, D.: On the integration of model-based feature information in product lifecycle management systems. Int. J. Informat. Manag. 37, 611–621 (2017)

    Article  Google Scholar 

  8. Chen, G.-N.: A Design for Diagnosis Technique for the Delay and Crosstalk Measurement of On-Chip Bus Wires. National Central University, Chung-Li, Taiwan (2000)

    Google Scholar 

  9. Chen, J., Patton, R.J.: Robust Model Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers, London (1999)

    Book  MATH  Google Scholar 

  10. Chung, J.C.H., Hwang, T.-S., Wu, C.T., Jiang, C.-T., Wang, J.-Y., Bai, Y., Zou, H.: Framework for integrated mechanical design automation. Comput.-Aided Design 32, 355–365 (2000)

    Article  Google Scholar 

  11. Cross, N.: Engineering Design Methods: Strategies for Product Design. John Wiley and Sons Ltd. (2008)

    Google Scholar 

  12. de Oca, S., Puig, V., Witczak, M., Dziekan, L.: Fault-tolerant control strategy for actuator faults using LPV techniques: application to a two degree of freedom helicopter. Int. J. Appl. Math. Comput. Sci. 22(1), 161–171 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ding, S.X.: Model-based Fault Diagnosis Techniques: Design Schemes. Algorithms and Tools. Springer, Berlin (2008)

    Google Scholar 

  14. Ehrlenspiel, K., Meerkamm, H.: Integrierte Produktentwicklung. Zusammenarbeit. Carl Hanser Verlag, Denkabläufe, Methodeneinsatz (2013)

    Book  Google Scholar 

  15. Fougeres, A.-J., Ostrosi, E.: Intelligent agents for feature modelling in computer aided design. J. Computat, Design Eng (2017)

    Google Scholar 

  16. Gao, W., Wu, D., Gao, K., Chen, X., Tin-Loi, F.: Structural reliability analysis with imprecise random and interval fields. Appl. Math. Modell. 55, 49–67 (2018)

    Article  MathSciNet  Google Scholar 

  17. Hales, C., Gooch, S.: Managing Engineering Design. Springer Science and Business Media (2004)

    Google Scholar 

  18. Herrema, A.J., Wiese, N.M., Darling, C.N., Ganapathysubramaniana, B., Krishnamurthya, A., Hsua, M.-C.: A framework for parametric design optimization using isogeometric analysis. J. Comput. Methods Appl. Mech. Eng. 316, 944–965 (2017)

    Article  MathSciNet  Google Scholar 

  19. Holder, K., Zech, A., Ramsaier, M., Stetter, R., Niedermeier, H.-P., Rudolph, S., Till, M.: Model-based requirements management in gear systems design based on graph-based design languages. Appl. Sci. 7, (2017)

    Article  Google Scholar 

  20. Hsieh, T.-Y., Li, K.-H., Chung, C.-C.: A fault-analysis oriented re-design and cost-effectiveness evaluation methodology for error tolerant applications. Microelectron. J. 66, 48–57 (2017)

    Article  Google Scholar 

  21. Hubka, V., Eder, W.E.: Theory of Technical Systems: A Total Concept Theory for Engineering Design. Springer (1988)

    Google Scholar 

  22. Isermann, R.: Fault Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance. Springer, New York (2006)

    Book  MATH  Google Scholar 

  23. Isermann, R.: Fault Diagnosis Applications: Model Based Condition Monitoring, Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  24. Jamali, S., Bani, M.J.: Application of fuzzy assessing for reliability decision making. In: Proceedings of the World Congress on Engineering and Computer Science (2017)

    Google Scholar 

  25. Jiang, F.-C., Hsu, C.-H.: Fault-tolerant system design on cloud logistics by greener standbys deployment with petri net model. Neurocomputing 256, 90–100 (2017)

    Article  Google Scholar 

  26. Jiang, Y., Qinglei, H., Ma, G.: Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures. ISA Trans. 49(1), 57–69 (2010)

    Article  Google Scholar 

  27. Korbicz, J., Kościelny, J., Kowalczuk, Z., Cholewa, W. (Eds.).: Fault Diagnosis. Models, Artificial Intelligence, Applications. Springer, Berlin (2004)

    Google Scholar 

  28. Kościelny, J.M.: Diagnostics of Automatic Industrial Processes. Academic Publishers, Office EXIT (2001)

    Google Scholar 

  29. Kowalczuk, Z., Olinski, K.E.: Sub-optimal fault-tolerant control by means of discrete optimization. Int. J. Appl. Math. Comput. Sci. 18(4), 50–61 (2008)

    Article  MATH  Google Scholar 

  30. Lee, Y.I., Cannon, M., Kouvaritakis, B.: Extended invariance and its use in model predictive control. Automatica 41(12), 2163–2169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, H.-X., Lu, X.: System Design and Control Integration for Advanced Manufacturing. Wiley and Sons Ltd., Zurich (2015)

    Google Scholar 

  32. Li, Q., Zhang, W.J., Chen, L.: Design for control—a concurrent engineering approach for mechatronic systems design. IEEE/ASME Trans. Mechatron. 6, 161–169 (2001)

    Article  Google Scholar 

  33. Liang, X.F., Wang, H.D., Yi, H., Li, D.: Warship reliability evaluation based on dynamic bayesian networks and numerical simulation. Ocean Eng. 136, 129–140 (2017)

    Article  Google Scholar 

  34. Lin, J.-W., Yang, M.-F.: Fault-tolerant design for wide-area mobile ipv6 networks. J. Syst. Softw. 82, 1434–1446 (2009)

    Article  Google Scholar 

  35. Lindemann, U.: Methodische Entwicklung technischer Produkte. Springer (2009)

    Google Scholar 

  36. Liu, M., Cao, X., Shi, P.: Fault estimation and tolerant control for fuzzy stochastic systems. Trans. Fuzzy Syst. 21(2), 221–229 (2013)

    Article  Google Scholar 

  37. MacDonald, E.F., She, J.: Seven cognitive concepts for successful eco-design. J. Clean. Product. 92, 23–36 (2015)

    Article  Google Scholar 

  38. Noura, H., Sauter, D., Hamelin, F., Theilliol, D.: Fault-tolerant control in dynamic systems: application to a winding machine. IEEE Control Syst. Magaz. 20(1), 33–49 (2000)

    Article  Google Scholar 

  39. O’Connor, P.D.T., Kleyner, A.: Practical Reliability Engineering. John Wiley and Sons, Ltd (2012)

    Google Scholar 

  40. Oh, Y.G., Jeong, J.K., Lee, J.J., Lee, Y.H., Baek, S.M., Lee, S.J.: Fault-tolerant design for advanced diverse protection system. Nucl. Eng. Technol. 45(6), 795–802 (2013)

    Article  Google Scholar 

  41. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design: A Systematic Approach. Springer (2007)

    Google Scholar 

  42. Pham, H.: System Software Reliability. Springer (2006)

    Google Scholar 

  43. Ponn, J., Lindemann, U.: Konzeptentwicklung und Gestaltung technischer Produkte. Springer (2011)

    Google Scholar 

  44. Porter, R., Ronen, A., Shoham, Y., Tennenholtz, M.: Fault tolerant mechanism design. Artif. Intell. 45(6), 1783–1799 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Pourmohammad, S., Fekih, A.: Fault-tolerant control of wind turbine systems—a review. In: Proceedings of the Green Technologies Conference (IEEE-Green), pp. 1–6 (2011)

    Google Scholar 

  46. Rafajlowicz, E., Rafajlowicz, W.: Control of linear extended nd systems with minimized sensitivity to parameter uncertainties. Multidimens. Syst. Signal Process. 24(4), 637–656 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rafajlowicz, E., Styczen, K., Rafajlowicz, W.: A modified filter sqp method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics. Int. J. Appl. Math. Comput. Sci. 22(2), 313–326 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ramsaier, M., Spindler, C., Stetter, R., Rudolph, S., Till, M.: Digital representation in multicopter design along the product life-cycle. Procedia CIRP. 62, 559–564 (2016)

    Article  Google Scholar 

  49. Ramsaier, M., Stetter, R., Till, M., Rudolph, S., Schumacher, A.: Automatic definition of density-driven topology optimization with graph-based design languages. In: Proceedings of the 12th World Congress on Structural and Multidisciplinary Optimisation (2017)

    Google Scholar 

  50. Roozenburg, N.F.M., Eekels, J.: Product Design: Fundamentals and Methods. Wiley (1995)

    Google Scholar 

  51. Rotondo, D., Puig, V., Nejjari, F., Romera, J.A.: A modified filter sqp method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics. Quasi-Lpv Fault-Toler. Control. Four-Wheel. Omnidirectional Mob. Rob. 62(6), 3932–3944 (2015)

    Google Scholar 

  52. Rotondo, D., Puig, V., Nejjari, F., Witzcak, M.: Automated generation and comparison of Takagi-Sugeno and polytopic quasi-LPV models. Fuzzy Sets Syst. 277(C), 44–64 (2015)

    Google Scholar 

  53. Rouissi, F., Hoblos, G.: Fault tolerant sensor network design with respect to diagnosability properties. In: Proceedings of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS), pp. 1120–1124 (2012)

    Article  Google Scholar 

  54. Schmelcher, J., Stetter, R., Till, M.: Integrating the ability for topology optimization in a commercial cad-system. In: Proceedings of the 20th International Conference on Engineering Design (ICED 15), Vol 8: Vol 6: Design Methods and Tools Part 2, pp. 173–182 (2015)

    Google Scholar 

  55. Shirazipourazad, S., Sen, A., Bandyopadhyay, S.: Fault-tolerant design of wireless sensor networks with directional antennas. Pervas. Mobile Comput. 13, 258–271 (2014)

    Article  Google Scholar 

  56. Si, X.-S., Wang, W., Hu, C.-H., Zhou, D.-H.: Remaining useful life estimationa review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011)

    Article  Google Scholar 

  57. Stetter, R.: Monitoring in product development. In: Conference Proceedings of the 14th European Workshop on Advanced Control and Diagnosis (ACD) (2017)

    Google Scholar 

  58. Stetter, R., Möhringer, S., Günther, J., Pulm, U.: Investigation and support of evolutionary design. In: Proceedings of the 20th International Conference on Engineering Design (ICED 15) Vol 8: Innovation and Creativity, pp. 183–192 (2015)

    Google Scholar 

  59. Stetter, R., Seemüller, H., Chami, M., Voos H.: Interdisciplinary system model for agent-supported mechatronic design. In: Proceedings of the 18th International Conference on Engineering Design (ICED11)

    Google Scholar 

  60. Stetter, R., Simundsson, A.: Design for control. In: Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 4: Design Methods and Tools, pp. 149–158 (2017)

    Google Scholar 

  61. Stetter, R., Witczak, P., Witczak, Kauf, F., Staiger, B., Spindler, C.: Development of a system for production energy prognosis. In: Proceedings of the 20th International Conference on Engineering Design (ICED 15) Vol 1: Design for Life, pp. 107–116 (2015)

    Google Scholar 

  62. Straka, M., Kastil, J., Kotasek, Z., Miculka, L.: Fault tolerant system design and seu injection based testing. Microprocess. Microsyst. 37, 155–173 (2013)

    Article  Google Scholar 

  63. Suh, N.P.: Konzeptentwicklung und Gestaltung technischer Produkte. Oxford University Press (2001)

    Google Scholar 

  64. Tatjewski, P.: Advanced Control of Industrial Processes: Structures and Algorithms. Advances in Industrial Control. Springer, London (2007)

    MATH  Google Scholar 

  65. Tornowa, A., Graubohm, R., Dietrich, F., Drder, K.: Design automation for battery system variants of electric vehicles with integrated product and process evaluation. Procedia CIRP 50, 424–429 (2016)

    Article  Google Scholar 

  66. Trave-Massuyes, L.: Bridging control and artificial intelligence theories for diagnosis: a survey. Eng. Appl. Artif. Intell. 27, 1–16 (2004)

    Article  Google Scholar 

  67. Ulrich, K.T., Eppinger, S.D.: Product Design and Development. McGraw-Hill (2008)

    Google Scholar 

  68. Vedachalam, N., Umapathy, A., Ramadass, G.A.: Fault-tolerant design approach for reliable offshore multi-megawatt variable frequency converters. J. Ocean. Eng. Sci. 1, 226–237 (2016)

    Article  Google Scholar 

  69. Wang, F., Hu, Y., Li, X.: A design-for-diagnosis technique for diagnosing integrated circuit faults with faulty scan chains. In: Proceedings of the IEEE 8th Workshop on RTL and High Level Testing (2007)

    Google Scholar 

  70. Wang, H.: A survey of maintenance policies of deteriorating systems. Eur. J. Oper. Res. 139(3), 469–489 (2002)

    Article  MATH  Google Scholar 

  71. Witczak, M.: Modelling and Estimation Strategies for Fault Diagnosis of Non-linear Systems. Springer, Berlin (2007)

    MATH  Google Scholar 

  72. Witczak, M.: Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems. Springer, Analytical and Soft Computing Approaches (2014)

    Book  MATH  Google Scholar 

  73. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Ann. Rev. Control 32(2), 229–252 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Stetter .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stetter, R. (2020). Introduction . In: Fault-Tolerant Design and Control of Automated Vehicles and Processes. Studies in Systems, Decision and Control, vol 201. Springer, Cham. https://doi.org/10.1007/978-3-030-12846-3_1

Download citation

Publish with us

Policies and ethics