Skip to main content

Prediction of the Remaining Useful Life for Components of Automated Processes

  • Chapter
  • First Online:
Fault-Tolerant Design and Control of Automated Vehicles and Processes

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 201))

  • 481 Accesses

Abstract

This chapter explains a strategy for scheduling in assembly systems, which is based on an innovative algorithm for the estimation of the state of the battery of vehicles in automated processes. The chapter includes descriptions of the underlying research, the sample application, the state of the art in the concerned areas, the estimation of the battery state, the prognosis of the remaining useful life, the predictive control of the assembly system and the verification of the developed approach as well as the results of this verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, D.: Health Monitoring of Structural Materials and Components: Methods with Applications. Wiley-Interscience, New Jersey (2007)

    Book  Google Scholar 

  2. Alessandri, A., Baglietto, M., Battistelli, G.: Design of state estimators for uncertain linear systems using quadratic boundedness. Automatica 42(3), 497–502 (2006)

    Article  MathSciNet  Google Scholar 

  3. Amstadter, B.L.: Reliability Mathematics: Fundamentals, Practices. Procedures. McGraw-Hill, New York (1977)

    Google Scholar 

  4. Andre, D., Appel, C., Soczka-Guth, T., Sauer, D.U.: Advanced mathematical methods of soc and soh estimation for lithium-ion batteries. J. Power Sour. 224, 20–27 (2013)

    Article  Google Scholar 

  5. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and linearity: an algebra for discrete event systems. J. Oper. Res. Soc. 45, 118–119 (1994)

    MATH  Google Scholar 

  6. Barre, A., Deguilhem, B., Grolleau, S., Gerad, M., Suard, F., Riu, D.: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sour. 241, 680–689 (2013)

    Article  Google Scholar 

  7. Berecibar, M., Gandiaga, I., Villarreal, I., Omar, N., Van Mierlo, J., Van den Bossche, P.: Critical review of state of health estimation methods of li-ion batteries for real applications. Renew. Sustain. Energy Rev. 56, 572–587 (2016)

    Article  Google Scholar 

  8. Butkovic, P.: Max-Linear Systems: Theory and Algorithms. Springer, Berlin (2010)

    Book  Google Scholar 

  9. Chen, Z., Cao, M., Mao, Z.: Remaining useful life estimation of aircraft engines using a modified similarity and supporting vector machine (svm) approach. Energies 11(1), (2018)

    Article  Google Scholar 

  10. Dabrowska, A., Stetter, R., Sasmito, H., Kleinmann, S.: Extended kalman filter algorithm for advanced diagnosis of positive displacement pumps. In: Proceedings of the 8th SAFEPROCESS: IFAC International Symposium on Fault Detection, Supervision and Safety for Technical Processes, 29th to 31st August 2012. Mexico City, Mexico (2012)

    Article  Google Scholar 

  11. Ding, B.: Constrained robust model predictive control via parameter-dependent dynamic output feedback. Automatica 46(9), 1517–1523 (2010)

    Article  MathSciNet  Google Scholar 

  12. Ding, B.: Dynamic output feedback predictive control for nonlinear systems represented by a Takagi-Sugeno model. IEEE Trans. Fuzzy Syst. 19(5), 831–843 (2011)

    Article  Google Scholar 

  13. Dong, M., He, D.: A segmental hidden semi-markov model (hsmm)-based diagnostics and prognostics framework and methodology. Mech. Syst. Signal Process. 21, 2248–2266 (2007)

    Article  Google Scholar 

  14. Farrar, C.R., Worden, K.: An introduction to structural health monitoring. Philos. Trans. R. Soc. (Math., Phys. Eng. Sci.) 365(1), 303–315 (2007)

    Article  Google Scholar 

  15. Ferri, F.A.S., Rodrigues, L.R., Gomes, J.P.P., Medeiros, I.P., Galvao, R.K.H., Nascimento Jr C.L.: Combining phm information and system architecture to support aircraft maintenance planning. In: Proceedings of the IEEE International Systems Conference, Orlando, USA (2013)

    Google Scholar 

  16. Goebel, K., Saha, B., Saxena, A., Celaya, J.R., Christophersen, J.: Prognostics in battery health management. IEEE Instrum. Meas. Mag. 11(4), 33–40 (2008)

    Article  Google Scholar 

  17. He, W., Willard, N., Osterman, M., Pecht, M.: Prognostics of lithium-ion batteries based on dempstershafer theory and the bayesian monte carlo method. J. Power Sour. 196, 10314–10321 (2011)

    Article  Google Scholar 

  18. Heng, A., Zhang, S., Tan, A.C.C., Mathew, J.: Rotatin gmachinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Signal Process. 23, 724–739 (2009)

    Article  Google Scholar 

  19. Holder, K., Zech, A., Ramsaier, M., Stetter, R., Niedermeier, H.-P., Rudolph, S., Till, M.: Model-based requirements management in gear systems design based on graph-based design languages. Appl. Sci. 7, (2017)

    Article  Google Scholar 

  20. Hu, C., Youn, B.D., Chung, J.: A multiscale framework with extended kalman filter for lithium-ion battery soc and capacity estimation. Appl. Energy 92, 694–704 (2012)

    Article  Google Scholar 

  21. Hua, Y., Cordoba-Arenas, A., Warner, N., Rizzoni, G.: A multi time-scale state-of-charge and state-of-health estimation framework using nonlinear predictive filter for lithium-ion battery pack with passive balance control. J. Power Sour. 280, 293–312 (2015)

    Article  Google Scholar 

  22. Huang, R., Xi, L., Li, X., Liu, C.R., Qiu, H., Lee, J.: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods. Mech. Syst. Signal Process. 21, 193–207 (2007)

    Article  Google Scholar 

  23. Isermann, R.: Fault Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance. Springer, New York (2006)

    Book  Google Scholar 

  24. Kan, M.S., Tan, A.C.C., Mathew, J.: A review on prognostic techniques for non-stationary and non-linear rotating systems. Mech. Syst. Signal Process. 62–63, 1–20 (2015)

    Article  Google Scholar 

  25. Kececioglu, D.: Reliability Engineering Handbook, vol. 2. Wiley-Interscience, New Jersey (2002)

    MATH  Google Scholar 

  26. Khorasgani, H., Biswas, G., Sankararaman, S.: Methodologies for system-level remaining useful life prediction. Reliab. Eng. Syst. Saf. 154, 8–18 (2016)

    Article  Google Scholar 

  27. Klass, V., Behm, M., Lindbergh, G.: A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J. Power Sour. 270, 262–272 (2014)

    Article  Google Scholar 

  28. Klutke, G.-A., Kiessler, P.C., Wortman, M.A.: A critical look at the bathtub curve. IEEE Trans. Reliab. 52(1), 125–129 (2003)

    Article  Google Scholar 

  29. Kodagoda, K.R.S., Wijesoma, W.S., Teoh, E.K.: Fuzzy speed and steering control of an agv. IEEE Trans. Control. Syst. Technol. 10(1), 112–120 (2002)

    Article  Google Scholar 

  30. Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D.: Prognostics and health management design for rotary machinery systems - reviews, methodology and applications. Mech. Syst. Signal Process. 42, 314–334 (2014)

    Article  Google Scholar 

  31. Lei, Y., Li, N., Guo, L., Li, N., Yan, T., Lin, J.: Machinery health prognostics: a systematic review from data acquisition to rul prediction. Mech. Syst. Signal Process. 104, 799–834 (2018)

    Article  Google Scholar 

  32. Li, N., Lei, Y., Liu, Z., Lin, J.: A particle filtering-based approach for remaining useful life predication of rolling element bearings. In: 2014 International Conference on Prognostics and Health Management, pp. 1–8 (2014)

    Google Scholar 

  33. Liao, L., Koetting, F.: Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Trans. Reliab. 63(1), 191–207 (2014)

    Article  Google Scholar 

  34. Majdzik, P., Akielaszek-Witczak, A., Seybold, L., Stetter, R., Mrugalska, B.: A fault-tolerant approach to the control of a battery assembly system. Control Eng. Pract. 55, 139–148 (2016)

    Article  Google Scholar 

  35. Mosallam, A., Medjaher, K., Zerhouni, N.: Data-driven prognostic method based on bayesian approaches fordirect remaining useful life prediction. J. Intell. Manuf. 27(5), 1037–1048 (2016). Oct

    Article  Google Scholar 

  36. Mrugalska, B.: A bounded-error approach to actuator fault diagnosis and remaining useful life prognosis of takagi-sugeno fuzzy systems. ISA Trans. 80, 257–266 (2018)

    Article  Google Scholar 

  37. Mrugalska, B., Stetter, R.: Health-aware model-predictive control of a cooperative AGV-based production system. Sens. 19(3), (2019)

    Article  Google Scholar 

  38. Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M.: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sour. 239, 680–688 (2013)

    Article  Google Scholar 

  39. Paoli, A., Sartini, M., Lafortune, S.: Active fault tolerant control of discrete event systems using online diagnostics. Automatica 47, 639–649 (2011)

    Article  MathSciNet  Google Scholar 

  40. Pecht, M.: Prognostics and Health Management of Electronics. Wiley-Interscience, New York (2010)

    Google Scholar 

  41. Pecht, M., Jaai, R.: A prognostics and health management roadmap for information and electronics-rich systems. Microelectron. Reliab. 50, 317–323 (2010)

    Article  Google Scholar 

  42. Peng, Y., Dong, M., Zuo, M.J.: Current status of machine prognostics in condition-based maintenance: a review. Int. J. Adv. Manuf. Technol. 50(1–4), 297–313 (2010)

    Article  Google Scholar 

  43. Pham, H.T., Yang, B.S.: Estimation and forecasting of machine health condition using arma/garch model. Mech. Syst. Signal Process. 24(2), 546–558 (2010)

    Article  Google Scholar 

  44. Polak, M., Majdzik, Z., Banaszak, P., Wojcik, R.: The performance evaluation tool for automated prototyping of concurrent cyclic processes. Fundam. Inform. 60, 269–289 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Pordeus Gomes, J.P., Rodrigues, L.R., Harrop Galvao, R.K., Yoneyama, T.: System level rul estimation for multiple-component systems. In: Proceedings of the 1st Annual Conference of the Prognostics and Health Management Society (2013)

    Google Scholar 

  46. Rad, J.S., Hosseini, E., Zhang, Y., Chen, C.: Online tool wear monitoring and estimation using power signals and s-transform. In: Proceedings of SysTol (2013)

    Google Scholar 

  47. Ramsaier, M., Holder, K., Zech, A., Stetter, R., Rudolph, S., Till, M.: Digital representation of product functions in multicopter design. In: Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 1: Resource Sensitive Design, Design Research Applications and Case Studies (2017)

    Google Scholar 

  48. Remmlinger, J., Buchholz, M., Soczka-Guth, T., Dietmayer, K.: On-board state-of-health monitoring of lithium-ion batteries using linear parameter-varying models. J. Power Sour. 239, 689–695 (2013)

    Article  Google Scholar 

  49. Rezvanizaniani, S.M., Liu, Z., Chen, Y., Lee, J.: Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (ev) safety and mobility. J. Power Sour. 256, 110–124 (2014)

    Article  Google Scholar 

  50. Saha, B., Goebel, K., Poll, S., Christophersen, J.: Prognostics methods for battery health monitoring using a bayesian framework. IEEE Trans. Instrum. Meas. 58(2), 291–296 (2009)

    Article  Google Scholar 

  51. Sankararaman, S.: Significance, interpretation, and quantification of uncertainty in prognostics and remaining useful life prediction. Mech. Syst. Signal Process. 52–53, 228–247 (2015)

    Article  Google Scholar 

  52. Seybold, L., Witczak, M., Majdzik, P., Stetter, R.: Towards robust predictive fault-tolerant control for a battery assembly system. Int. J. Appl. Math. Comput. Sci. 25(4), 849–862 (2015)

    Article  Google Scholar 

  53. Si, X.-S., Wang, W., Hu, C.-H., Zhou, D.-H.: Remaining useful life estimationa review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011)

    Article  Google Scholar 

  54. Sidhu, A., Izadian, A., Anwar, S.: Adaptive nonlinear model-based fault diagnosis of li-ion batteries. IEEE Trans. Ind. Electron. 62(2), 1002–1011 (2015)

    Article  Google Scholar 

  55. Sikorska, J.Z., Hodkiewicz, M., Ma, L.: Prognostic modelling options forremaining use ful life estimation by industry. Mech. Syst. Signal Process. 25, 1803–1836 (2011)

    Article  Google Scholar 

  56. Singleton, R.K., Strangas, E.G., Aviyente, S.: Extended kalman filtering for remaining-useful-life estimation of bearings. IEEE Trans. Ind. Electron. 62(3), 1781–1790 (2015). March

    Google Scholar 

  57. Snihir, I., Rey, W., Verbitskiy, E., Belfadhel-Ayeb, A., Notten, P.: Battery open-circuit voltage estimation by a method of statistical analysis. J. Power Sour. 159(2), 1484–1487 (2006)

    Article  Google Scholar 

  58. Stetter, R., Paczynski, A.: Intelligent steering system for electrical power trains. In: Emobility Electrical Power Train - IEEEXplore, pp. 1–6 (2010)

    Google Scholar 

  59. Stetter, R., Paczynski, A., Zajac, M.: Methodical development of innovative robot drives. In: Tools and Methods of Competitive Engineering – TMCE 2008: Proceedings of the seventh international symposium. Izmir, Turcja, 2008. Delft: Delft University of Technology, vol. 1, pp. 565–576 (2008)

    Google Scholar 

  60. Stetter, R., Witczak, M.: Degradation modelling for health monitoring systems. J. Phys. 570, (2014)

    Google Scholar 

  61. Stetter, R., Witczak, M., Pazera, M.: Virtual diagnostic sensors design for an automated guided vehicle. Appl. Sci. 8(5) (2018)

    Article  Google Scholar 

  62. Taborelli, C., Onori, S.: Advanced battery management system design for soc/soh estimation for e-bikes applications. Int. J. Powertrains 5(4) (2016)

    Google Scholar 

  63. Tobon-Mejia, D.A., Medjaher, K., Zerhouni, N., Tripot, G.: A data-driven failure prognostics method based on mixture of gaussians hidden markov models. IEEE Trans. Reliab. 61(2), 491–503 (2012)

    Article  Google Scholar 

  64. van den Boom, T.J.J., De Schutter, B.: Modelling and control of discrete event systems using switching max-plus-linear systems. Control. Eng. Pract. 14, 1199–1211 (2006)

    Article  Google Scholar 

  65. Wang, H.-K., Li, Y.-F., Huang, H.-Z., Jin, T.: Near-extreme system condition and near-extreme remaining useful time for a group of products. Reliab. Eng. Syst. Saf. 162, 103–110 (2017)

    Article  Google Scholar 

  66. Wang, J., Steiber, J., Surampudi, B.: Autonomous ground vehicle control system for high-speed and safe operation. In: 2008 American Control Conference (2008)

    Google Scholar 

  67. Wang, T., Yu, J., Siegel, D., Lee, J.: A similarity-based prognostics approach for remaining useful life estimation of engineered systems. In: Proceedings of the International Conference on Prognostics and Health Management, pp. 1–6 (2008)

    Google Scholar 

  68. Widodo, A., Shim, M.-C., Caesarendra, W., Yang, B.-S.: Intelligent prognostics for battery health monitoring based on sample entropy. Expert. Syst. Appl. 38, 11763–11769 (2011)

    Article  Google Scholar 

  69. Witczak, M.: Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems. Analytical and Soft Computing Approaches. Springer, Berlin (2014)

    Book  Google Scholar 

  70. Yousfi, Basma: Rassi, Tarek, Amairi, Messaoud, Aoun, Mohamed: Set-membership methodology for model-based prognosis. ISA Trans. 66, 216–225 (2017)

    Article  Google Scholar 

  71. Zhang, H., Hu, C., Kong, X., Zhang, W., Zhang, Z.: Online updating with a wiener-process-based prediction model using ukf algorithm for remaining useful life estimation. In: 2014 Prognostics and System Health Management Conference (PHM-2014 Hunan), pp. 305–309 (2014)

    Google Scholar 

  72. Ziemniak, P., Stania, M., Stetter, R.: Mechatronics engineering on the example of an innovative production vehicle. In: Norell Bergendahl, M., Grimheden, M., Leifer, L., Skogstad, P., Lindemann, U. (eds.) Proceedings of the 17th International Conference on Engineering Design (ICED’09), vol. 1. pp. 61–72 (2009)

    Google Scholar 

  73. Zou, Y., Hu, X., Ma, H., Li. S.E.: Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. J. Power Sour. 270, 793–803 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Stetter .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stetter, R. (2020). Prediction of the Remaining Useful Life for Components of Automated Processes . In: Fault-Tolerant Design and Control of Automated Vehicles and Processes. Studies in Systems, Decision and Control, vol 201. Springer, Cham. https://doi.org/10.1007/978-3-030-12846-3_7

Download citation

Publish with us

Policies and ethics