Skip to main content

Automatic Control and Feedback Loops in Biology and Medicine

  • Conference paper
  • First Online:
Automation 2019 (AUTOMATION 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 920))

Included in the following conference series:

Abstract

Biological systems, from individual cells to cells populations, to tissue and organs to whole organisms, are equipped in multiple positive and negative feedback control mechanisms. Knowledge of these mechanisms is crucial if we want to modify intracellular biochemical control systems (in genetic engineering), affect them during therapies, control populations metabolism or behavior (e.g. in bioreactors), or design artificial organs or devices supporting physiological processes. This work focuses on three aspects of interdisciplinary research in automatic control, biology and medicine: (i) modeling of physiological processes on a whole body level, aimed at supporting artificial organs development; (ii) using optimal control theory for designing anticancer therapy protocols and (iii) using simulation and analysis techniques for identification of complex intracellular regulatory mechanisms, aimed at expanding knowledge in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pietribiasi, M., et al.: Modelling transcapillary transport of fluid and proteins in hemodialysis patients. PLoS One 11(8), e0159748 (2016). https://doi.org/10.1371/journal.pone.0159748

    Article  Google Scholar 

  2. Waniewski, J., et al.: Changes of peritoneal transport parameters with time on dialysis: assessment with sequential peritoneal equilibration test. Int. J. Artif. Organs 40(11), 595–601 (2017). https://doi.org/10.5301/ijao.5000622

    Article  Google Scholar 

  3. Rodbard, D.: Continuous glucose monitoring: a review of recent studies demonstrating improved glycemic outcomes. Diabetes Technol. Ther. 19(S3), S25–S37 (2017). https://doi.org/10.1089/dia.2017.0035

    Article  Google Scholar 

  4. Aleppo, G., Webb, K.: Continuous glucose monitoring integration in clinical practice: a stepped guide to data review and interpretation. J. Diabetes Sci. Technol. 19 (2018). https://doi.org/10.1177/1932296818813581

  5. Kim, J.H., Cowger, J.A., Shah, P.: The evolution of mechanical circulatory support. Cardiol. Clin. 36(4), 443–449 (2018). https://doi.org/10.1016/j.ccl.2018.06.011

    Article  Google Scholar 

  6. Branson, R.D.: Automation of mechanical ventilation. Crit. Care Clin. 34(3), 383–394 (2018). https://doi.org/10.1016/j.ccc.2018.03.012

    Article  MathSciNet  Google Scholar 

  7. Ogurtsova, K., da Rocha Fernandes, J.D., Huang, Y., Linnenkamp, U., Guariguata, L., Cho, N.H., Cavan, D., Shaw, J.E., Makaroff, L.E.: IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 128, 40–50 (2017). https://doi.org/10.1016/j.diabres.2017.03.024

    Article  Google Scholar 

  8. Anderson, S.M., et al.: Multinational home use of closed-loop control is safe and effective. Diabetes Care 39(7), 1143–1150 (2016). https://doi.org/10.2337/dc15-2468

    Article  Google Scholar 

  9. Buckingham, B., Ly, T.: Closed-loop control in type 1 diabetes. Lancet Diabetes Endocrinol. 4(3), 191–193 (2016). https://doi.org/10.1016/S2213-8587(16)00015-2

    Article  Google Scholar 

  10. DeJournett, L., DeJournett, J.: In silico testing of an artificial-intelligence-based artificial pancreas designed for use in the intensive care unit setting. J. Diabetes Sci. Technol. 10(6), 1360–1371 (2016)

    Article  Google Scholar 

  11. Trevitt, S., Simpson, S., Wood, A.: Artificial pancreas device systems for the closed-loop control of type 1 diabetes: what systems are in development? J. Diabetes Sci. Technol. 10(3), 714–23 (2016). https://doi.org/10.1177/1932296815617968

    Article  Google Scholar 

  12. Ly, T.T., et al.: Automated overnight closed-loop control using a proportional-integral-derivative algorithm with insulin feedback in children and adolescents with type 1 diabetes at diabetes camp. Diabetes Technol. Ther. 18(6), 377–384 (2016). https://doi.org/10.1089/dia.2015.0431

    Article  Google Scholar 

  13. Hovorka, R., et al.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25, 905–920 (2004)

    Article  Google Scholar 

  14. Wang, Y., Xie, H., Jiang, X., Liu, B.: Intelligent closed-loop insulin delivery systems for ICU patients. IEEE J. Biomed. Health Inform. 18(1), 290–299 (2014). https://doi.org/10.1109/JBHI.2013.2269699

    Article  Google Scholar 

  15. Eren-Oruklu, M., Cinar, A., Quinnb, L., Smith, D.: Adaptive control strategy for regulation of blood glucose levels in patients with type 1 diabetes. J. Proc. Control 19, 1333–1346 (2009)

    Article  Google Scholar 

  16. Marchetti, G., Barolo, M., Jovanovic, L., Zisser, H., Seborg, D.E.: A feedforward-feedback glucose control strategy for type 1 diabetes mellitus. J. Proc. Control 18(2), 149–162 (2008)

    Article  Google Scholar 

  17. Palerm, C.C., Zisser, H., Jovanovic, L., Doyle, F.J.: A run-to-run control strategy to adjust basal insulin infusion rates in type 1 diabetes. J. Proc. Control 18(3–4), 258–265 (2008)

    Article  Google Scholar 

  18. Fereydouneyan, F., Zare, A., Mehrshad, N.: Using a fuzzy controller optimized by a genetic algorithm to regulate blood glucose level in type 1 diabetes. J. Med. Eng. Technol. 35(5), 224–230 (2011). https://doi.org/10.3109/03091902.2011.569050

    Article  Google Scholar 

  19. Fernandez de Canete, J., Gonzalez-Perez, S., Ramos-Diaz, J.C.: Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes. Comput. Methods Programs Biomed. 106(1), 55–66 (2012). https://doi.org/10.1016/j.cmpb.2011.11.006

    Article  Google Scholar 

  20. Rahaghi, F.N., Gough, D.A.: Blood glucose dynamics. Diabetes Technol. Ther. 10(2), 81–94 (2008). https://doi.org/10.1089/dia.2007.0256

    Article  Google Scholar 

  21. Cameron, F.M., et al.: Closed-loop control without meal announcement in type 1 diabetes. Diabetes Technol. Ther. 19(9), 527–532 (2017). https://doi.org/10.1089/dia.2017.0078

    Article  Google Scholar 

  22. Bally, L., et al.: Day-and-night glycaemic control with closed-loop insulin delivery versus conventional insulin pump therapy in free-living adults with well controlled type 1 diabetes: an open-label, randomised, crossover study. Lancet Diabetes Endocrinol. 5(4), 261–270 (2017). https://doi.org/10.1016/S2213-8587(17)30001-3

    Article  Google Scholar 

  23. Thabit, H., et al.: Closed-loop insulin delivery in inpatients with type 2 diabetes: a randomised, parallel-group trial. Lancet Diabetes Endocrinol. 5(2), 117–124 (2017). https://doi.org/10.1016/S2213-8587(16)30280-7

    Article  Google Scholar 

  24. Ly, T.T., et al.: Automated hybrid closed-loop control with a proportional-integral-derivative based system in adolescents and adults with type 1 diabetes: individualizing settings for optimal performance. Pediatr. Diabetes 18(5), 348–355 (2017). https://doi.org/10.1111/pedi.12399

    Article  Google Scholar 

  25. Zavitsanou, S., Mantalaris, A., Georgiadis, M.C., Pistikopoulos, E.N.: In silico closed-loop control validation studies for optimal insulin delivery in type 1 diabetes. IEEE Trans. Biomed. Eng. 62(10), 2369–2378 (2015). https://doi.org/10.1109/TBME.2015.2427991

    Article  Google Scholar 

  26. Peyser, T., Dassau, E., Breton, M., Skyler, J.S.: The artificial pancreas: current status and future prospects in the management of diabetes. Ann. N. Y. Acad. Sci. 1311, 102–123 (2014). https://doi.org/10.1111/nyas.12431

    Article  Google Scholar 

  27. Pinsker, J.E., et al.: Randomized crossover comparison of personalized MPC and PID control algorithms for the artificial pancreas. Diabetes Care 39(7), 1135–1142 (2016). https://doi.org/10.2337/dc15-2344

    Article  Google Scholar 

  28. Christiansen, S.C., et al.: A review of the current challenges associated with the development of an artificial pancreas by a double subcutaneous approach. Diabetes Ther. 8(3), 489–506 (2017). https://doi.org/10.1007/s13300-017-0263-6

    Article  Google Scholar 

  29. Blauw, H., Keith-Hynes, P., Koops, R., DeVries, J.H.: A review of safety and design requirements of the artificial pancreas. Ann. Biomed. Eng. 44(11), 3158–3172 (2016)

    Article  Google Scholar 

  30. Akhlaghi, F., Matson, K.L., Mohammadpour, A.H., Kelly, M., Karimani, A.: Clinical pharmacokinetics and pharmacodynamics of antihyperglycemic medications in children and adolescents with type 2 diabetes mellitus. Clin Pharmacokinet. 56(6), 561–571 (2017). https://doi.org/10.1007/s40262-016-0472-6

    Article  Google Scholar 

  31. Zarkovic, M., et al.: Variability of HOMA and QUICKI insulin sensitivity indices. Scand. J. Clin. Lab. Investig. 77(4), 295–297 (2017). https://doi.org/10.1080/00365513.2017.1306878

    Article  Google Scholar 

  32. Dadiani, V., et al.: Physical activity capture technology with potential for incorporation into closed-loop control for type 1 diabetes. J. Diabetes Sci. Technol. 9(6), 1208–1216 (2015). https://doi.org/10.1177/1932296815609949

    Article  Google Scholar 

  33. Ben Brahim, N., Place, J., Renard, E., Breton, M.D.: Identification of main factors explaining glucose dynamics during and immediately after moderate exercise in patients with type 1 diabetes. J. Diabetes Sci. Technol. 9(6), 1185–1191 (2015). https://doi.org/10.1177/1932296815607864

    Article  Google Scholar 

  34. Smieja, J., Galuszka, A.: Rule-based PID control of blood glucose level. In: Automatyzacja Procesów Dyskretnych. Teoria i zastosowania. t.II, pp. 223–232 (2018)

    Google Scholar 

  35. Kovatchev, B., Anderson, S., Heinemann, L., Clarke, W.: Comparison of the numerical and clinical accuracy of four continuous glucose monitors. Diabetes Care 31(6), 1160–1164 (2008). https://doi.org/10.2337/dc07-2401

    Article  Google Scholar 

  36. Swierniak, A., Kimmel, M., Smieja, J., Puszynski, K., Psiuk-Maksymowicz, K.: System Engineering Approach to Planning Anticancer Therapies. Springer (2016). https://doi.org/10.1007/978-3-319-28095-0

    Book  Google Scholar 

  37. Schaettler, H., Ledzewicz, U.: Optimal Control for Mathematical Models of Cancer Therapies. An Application of Geometric Methods. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-2972-6

    Book  Google Scholar 

  38. Swierniak, A., Kimmel, M., Smieja, J.: Mathematical modeling as a tool for planning anticancer therapy. Eur. J. Pharmacol. 625(1–3), 108–121 (2009). https://doi.org/10.1016/j.ejphar.2009.08.041

    Article  Google Scholar 

  39. Swierniak, A., Polanski, A., Smieja, J.: Modelling growth of drug resistant cancer populations as the system with positive feedback. Math. Comput. Model. 37(11), 1245–1252 (2003)

    Article  Google Scholar 

  40. Dolbniak, M., Smieja, J., Swierniak, A.: Structural sensitivity of control models arising in combined chemo-radiotherapy. In: Proceedings of the MMAR Conference, pp. 339–344 (2018)

    Google Scholar 

  41. Tyson, J.J., Novak, B.: Functional motifs in biochemical reaction networks. Ann. Rev. Phys. Chem. 61, 219–240 (2010)

    Article  Google Scholar 

  42. Smieja, J.: Model based analysis of signaling pathways. Int. J. Appl. Math. Comp. Sci. 18(2), 139–145 (2008)

    Article  Google Scholar 

  43. Kardynska, M., et al.: Quantitative analysis reveals crosstalk mechanisms of heat shock-induced attenuation of NF-\(\kappa \)B signaling at the single cell level. Plos Comp. Biol. 14(4), e1006130 (2018). https://doi.org/10.1371/journal.pcbi.1006130

    Article  Google Scholar 

  44. Cruz, J.J.: Feedback Systems. McGraw-Hill, New York (1972)

    Google Scholar 

  45. Puszynski, K., Lachor, P., Kardynska, M., Smieja, J.: Sensitivity analysis of deterministic signaling pathways models. Bull. Pol. Acad. Sci. 60(3), 471–479 (2012)

    Google Scholar 

  46. Smieja, J., Kardynska, M., Jamroz, A.: The meaning of sensitivity functions in signaling pathways analysis. Discret. Contin. Dyn. Syst. Ser. B 10(8), 2697–2707 (2014). https://doi.org/10.3934/dcdsb.2014.19.2697

    Article  MathSciNet  MATH  Google Scholar 

  47. Kardyñska, M., Smieja, J.: Sensitivity analysis of signaling pathway models based on discrete-time measurements. Arch. Control Sci. 27(2), 239–250 (2017). https://doi.org/10.1515/acsc-2017-0015

    Article  Google Scholar 

  48. Kardynska, M., Smieja, J.: Sensitivity analysis of signaling pathways in the frequency domain. In: Advances in Intelligent Systems and Computing, vol. 472, pp. 2194–5357 (2016). https://doi.org/10.1007/978-3-319-39904-1_25

    Google Scholar 

  49. Dolbniak, M., Kardynska, M., Smieja, J.: Sensitivity of combined chemo-and antiangiogenic therapy results in different models describing cancer growth. Discret. Contin. Dyn. Syst. Ser. B 23, 145–160 (2018). https://doi.org/10.3934/dcdsb.2018009

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw Smieja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smieja, J. (2020). Automatic Control and Feedback Loops in Biology and Medicine. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2019. AUTOMATION 2019. Advances in Intelligent Systems and Computing, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-030-13273-6_1

Download citation

Publish with us

Policies and ethics