Skip to main content

Discrete, Fractional Order, Cancellation Controller. Part II: PLC Implementation

  • Conference paper
  • First Online:
Automation 2019 (AUTOMATION 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 920))

Included in the following conference series:

Abstract

In the paper the PLC implementation of discrete, fractional order cancellation controller dedicated to control a high order inertial plant is given. The controller uses the hybrid transfer function model of the plant. It is implemented at PLC SIEMENS with respect to object-oriented approach recommended by IEC61131 standard. Results of tests agree with simulations. The proposed controller is easy to tune and assures the better control performance than typical PID.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astrom, K.J., Hagglund, T.: PID Controllers: Theory, Design and Tuning. ISA (1995)

    Google Scholar 

  2. Caponetto, R., Dongola, G., Fortuna, l., Petras, I.: Fractional Order Systems: Modeling and Control Applications. World Scientific Series on Nonlinear Science, Series A, vol. 72. World Scientific Publishing (2010)

    Google Scholar 

  3. Das, S., Pan, I.: Intelligent Fractional Order Systems and Control: An Introduction. Springer (2013) https://doi.org/10.1007/s11633-010-0552-2

    Article  Google Scholar 

  4. Ishihara, T., Hai-Jiao Guo, H.-J.: Design of optimal disturbance cancellation controllers via modified loop transfer recovery. Syst. Sci. Control Eng. 3(1), 332–339 (2015). https://doi.org/10.1080/21642583.2015.1023470

    Article  Google Scholar 

  5. Merrikh-Bayat, F.: Rules for selecting the parameters of Oustaloup recursive approximation for the simulation of linear feedback systems containing \(PID\) controller. Commun. Nonlinear Sci. Numer. Simulat. 17, 1852–1861 (2012)

    Article  MathSciNet  Google Scholar 

  6. Merrikh-Bayat, F.: Fractional-order unstable pole-zero cancellation in linear feedback systems. J. Process Control 23(6), 817–825 (2013)

    Article  Google Scholar 

  7. Merrikh-Bayat, F., Salimi, A.: Performance enhancement of non-minimum phase feedback systems by fractional-order cancellation of non-minimum phase zero on the Riemann surface: new theoretical and experimental results. Preprint submitted to Elsevier (2016)

    Google Scholar 

  8. Oprzedkiewicz, K., Mitkowski, W., Gawin, E.: Parameter identification for non integer order, state space models of heat plant. In: MMAR 2016: 21th International Conference on Methods and Models in Automation and Robotics, 29 August 01 September 2016, Miedzyzdroje, Poland, pp. 184–188 (2016). ISBN 978-1-5090-1866-6, ISBN 978-837518-791-5

    Google Scholar 

  9. Oprzedkiewicz, K., Mitkowski, W., Gawin, E.: The PLC implementation of fractional-order operator using CFE approximation. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2017: Innovations in Automation, Robotics and Measurment Techniques, 15–17 March, Warsaw, Poland. Advances in Intelligent Systems and Computing, vol. 550, pp. 22–33. Springer, Cham (2017). ISSN 2194-5357; ISBN 978-3-31954041-2; e-ISBN 978-3-319-54042-9

    Google Scholar 

  10. Oprzedkiewicz, K., Gawin, E., Gawin, T.: Real-time PLC implementations of fractional order operator. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2018: Advances in Automation, Robotics and Measurement Techniques, Advances in Intelligent Systems and Computing, vol. 743. Springer, Cham (2018). ISSN 2194-5357, ISBN 978-3-319-77178-6; e-ISBN: 978-3-319-77179-3. https://goo.gl/RHBJfp

    Google Scholar 

  11. Oprzedkiewicz, K., Mitkowski, W.: Parameter identification for non integer order, discrete, state space model of heat transfer process using CFE approximation. In: 23rd International Conference on Methods and Models in Automation and Robotics, 27–30 August 2018, Miedzyzdroje, Poland, pp. 436–440 (2018). ISBN 978-1-5386-4324-2

    Google Scholar 

  12. Ostalczyk, P.: Discrete Fractional Calculus: Applications in Control and Image Processing. Series in Computer Vision, vol. 4. World Scientific Publishing (2016)

    Google Scholar 

  13. Petras, I.: Fractional order feedback control of a DC motor. J. Electr. Eng. 60(3), 117–128 (2009)

    Google Scholar 

  14. Petras, I.: Tuning and implementation methods for fractional-order controllers. Fract. Calc. Appl. Anal. 15(2), 2012 (2012)

    Article  MathSciNet  Google Scholar 

  15. Petras, I.: http://people.tuke.sk/igor.podlubny/USU/matlab/petras/dfod1.m

  16. Tzafestas, S.G. (ed.): Methods and Applications of Intelligent Control. Springer (1997)

    Google Scholar 

Download references

Acknowledgements

This paper was sponsored partially by AGH UST grant no. 11.11.120.815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Oprzędkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oprzędkiewicz, K., Więckowski, Ł., Podsiadło, M. (2020). Discrete, Fractional Order, Cancellation Controller. Part II: PLC Implementation. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2019. AUTOMATION 2019. Advances in Intelligent Systems and Computing, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-030-13273-6_4

Download citation

Publish with us

Policies and ethics