Skip to main content

Using Multiple RFID Readers in Mobile Robots for Surface Exploration

  • Conference paper
  • First Online:
Automation 2019 (AUTOMATION 2019)

Abstract

The article presents selected aspects related to the implementation of RFID readers in a mobile robot that tests a given surface. The advantages of such a solution are given, which significantly improves the accuracy of the location. Issues related to energy flow in RFID systems are discussed, including inductive and propagation coupling. Details on software handling of multiple RFID readers are given. Test results of two modes of operation are presented, i.e. using polling and interrupts. The algorithm for reader prioritization is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Finkenzeller, K.: RFID Handbook, 3rd edn. Wiley, New York (2010)

    Google Scholar 

  2. ISO/IEC 15693. Identification cards - Contactless integrated circuit cards - Vicinity cards

    Google Scholar 

  3. ISO/IEC 14443-3. Identification cards - Contactless integrated circuit cards - Proximity cards (2016)

    Google Scholar 

  4. Sanpechuda, T., Kovavisaruch, L.: A review of RFID localization: applications and techniques. In: 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, May 2008, pp. 769–772 (2008)

    Google Scholar 

  5. Jian, M.-S., Wu, J.-S.: RFID applications and challenges. In: Radio Frequency Identification from System to Applications. InTech, Vienna (2013)

    Google Scholar 

  6. Willis, S., Helal, S.: RFID information grid for blind navigation and wayfinding. In: Ninth IEEE International Symposium on Wearable Computers (ISWC 2005), October 2005, pp. 34–37 (2005)

    Google Scholar 

  7. Lionel, M.N., Liu, Y., Lau, Y.C., Patil, A.P.: LANDMARC: indoor location sensing using active RFID. Wirel. Netw. 10(6), 701–710 (2004)

    Article  Google Scholar 

  8. Subramanian, S.P., Sommer, J., Schmitt, S., Rosenstiel, W.: RIL - reliable RFID based indoor localization for pedestrians. In: 16th International Conference on Software, Telecommunications and Computer Networks, September 2008, pp. 218–222 (2008)

    Google Scholar 

  9. Chia-Yu, Y., Wei-Chun, H.: An indoor positioning system based on the dual-channel passive RFID technology. IEEE Sens. J. 18(11), 4654 (2018)

    Article  Google Scholar 

  10. Pomárico-Franquiz, J.J., Shmaliy, Y.S.: Accurate self-localization in RFID tag information grids using FIR filtering. IEEE Trans. Ind. Inform. 10(2), 1317 (2014)

    Article  Google Scholar 

  11. Soltani, M.M., Motamedi, A., Hammad, A.: Enhancing cluster-based RFID tag localization using artificial neural networks and virtual reference tags. In: 2013 International Conference on Indoor Positioning and Indoor Navigation, 28–31 October 2013

    Google Scholar 

  12. Han-Yen, Y., Jiann-Jone, C., Tien-Ruey, H.: Design and implementation of a real-time object location system based on passive RFID tags. IEEE Sens. J. 15(9), 5015 (2015)

    Article  Google Scholar 

  13. Zhou, J., Shi, J.: RFID localization algorithms and applications - a review. J. Intell. Manuf. 20(6), 695–707 (2009)

    Article  Google Scholar 

  14. Saab, S.S., Nakad, Z.S.: A standalone RFID indoor positioning system using passive tags. IEEE Trans. Ind. Electron. 58(5), 1961–1970 (2011)

    Article  Google Scholar 

  15. Han, S., Lim, H., Lee, J.: An efficient localization scheme for a differential-driving mobile robot based on RFID system. IEEE Trans. Ind. Electron. 54(6), 3362–3369 (2007)

    Article  Google Scholar 

  16. Deyle, T., Nguyen, H., Reynolds, M.S., Kemp, C.C.: RFID-guided robots for pervasive automation. IEEE Pervasive Comput. 9(2), 37–45 (2010)

    Article  Google Scholar 

  17. Boccadoro, M., Martinelli, F., Pagnotelli, S.: Constrained and quantized Kalman filtering for an RFID robot localization problem. Auton. Robots 29(3–4), 235–251 (2010)

    Article  Google Scholar 

  18. DiGiampaolo, E., Martinelli, F.: Mobile robot localization using the phase of passive UHF-RFID signals. IEEE Trans. Ind. Electron. 61(1), 365–376 (2014)

    Article  Google Scholar 

  19. Gueaieb, W., Miah, M.S.: An intelligent mobile robot navigation technique using RFID technology. IEEE Trans. Instrum. Meas. 57(9), 1908–1917 (2008)

    Article  Google Scholar 

  20. Choi, B.S., Lee, J.W., Lee, J.J., Park, K.T.: A hierarchical algorithm for indoor mobile robot localization using RFID sensor fusion. IEEE Trans. Ind. Electron. 58(6), 2226–2235 (2011)

    Article  Google Scholar 

  21. DiGiampaolo, E., Martinelli, F.: A passive UHF-RFID system for the localization of an indoor autonomous vehicle. IEEE Trans. Ind. Electron. 59(10), 3961–3970 (2012)

    Article  Google Scholar 

  22. Papapostolou, A., Chaouchi, H.: RFID-assisted indoor localization and the impact of interference on its performance. J. Netw. Comput. Appl. 34(3), 902–913 (2011)

    Article  Google Scholar 

  23. Hubacz, M., Pawlowicz, B., Trybus, B.: Exploring a surface using RFID grid and group of mobile robots. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2018 Advances in Automation, Robotics and Measurement Techniques. Advances in Intelligent Systems and Computing, vol. 743, pp. 490–499. Springer (2018)

    Google Scholar 

  24. Jankowski-Mihułowicz, P., Węglarski, M.: Determination of 3-dimentional interrogation zone in anticollision RFID systems with inductive coupling by using Monte Carlo method. Acta Phys. Pol. A 121(4), 936–940 (2012)

    Article  Google Scholar 

  25. Jankowski-Mihułowicz, P., Kalita, W., Pawłowicz, B.: Problem of dynamic change of tags location in anticollision RFID systems. Microelectron. Reliab. 48(6), 911–918 (2008). https://doi.org/10.1016/j.microrel.2008.03.006

    Article  Google Scholar 

  26. IEC 61000-6-3 Electromagnetic Compatibility - Part 6-3: Generic Standards - Emission Standard For Residential, Commercial And Light-industrial Environments

    Google Scholar 

  27. Wang, J., Wang, D., Zhao, Y., Korhonen, T.: Fast anti-collision algorithms in RFID systems. In: International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies - UBICOMM 2007, 4–9 November 2007, pp. 75–80 (2007)

    Google Scholar 

  28. Jia, L., Bin, X., Xuan, L., Lijun, C.: Fast RFID polling protocols. In: 45th International Conference on Parallel Processing (ICPP). https://doi.org/10.1109/icpp.2016.42. Accessed 16–19 Aug 2016. ISBN 978-1-5090-2823-8

  29. Liu, J., Po, Y.: A Localization algorithm for mobile robots in RFID system. In: 2007 International Conference on Wireless Communications, Networking and Mobile Computing (2007). https://doi.org/10.1109/wicom.2007.527. Accessed 21–25 Sept 2007. ISBN 1-4244-1311-7

  30. MFRC522 Standard performance MIFARE and NTAG frontend, NXP Semiconductors. https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf

Download references

Acknowledgment

Results of Grant No. PBS1/A3/3/2012 from Polish National Centre for Research and Development as well as Statutory Activity of Rzeszow University of Technology were applied in this work. The work was developed by using equipment purchased in Operational Program Development of Eastern Poland 2007–2013, Priority Axis I Modern Economics, Activity I.3 Supporting Innovation under Grant No. POPW.01.03.00-18-012/09-00 as well as Program of Development of Podkarpacie Province of European Regional Development Fund under Grant No. UDA-RPPK.01.03.00-18-003/10-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcin Hubacz , Bartosz Pawłowicz or Bartosz Trybus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hubacz, M., Pawłowicz, B., Trybus, B. (2020). Using Multiple RFID Readers in Mobile Robots for Surface Exploration. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2019. AUTOMATION 2019. Advances in Intelligent Systems and Computing, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-030-13273-6_42

Download citation

Publish with us

Policies and ethics