Skip to main content

Low Phase Shift Differential FIR Filter Design

  • Conference paper
  • First Online:
Automation 2019 (AUTOMATION 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 920))

Included in the following conference series:

  • 925 Accesses

Abstract

A low-phase shift and real-time differential estimation is a common problem in the control design. When linear phase shift filters are used at the system’s output, a strong performance loss appears with the increased phase shift. This paper presents a new FIR weights determination method focused on low-pass and differential filter design. The primary goal of this method is to minimize the phase shift caused by the differential FIR filter inside the control unit. In this case, the filter fits a defined polynomial to an asymmetric data set, then calculates a specified weighted sum. This feature allows reducing the value of the phase shift, even for differential estimation, and especially for the low-frequency spectrum. Moreover, the proposed solution results in LS optimal local differentiation based on the filter design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, F., Jain, R., Gupta, D., et al.: Design and analysis of low pass elliptic filter. In: 2016 Second International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, India, pp. 449–451 (2016)

    Google Scholar 

  2. Baranowski, J., Piątek, P., Bauer, W., et al.: Bi-fractional filters, part 2: right half-plane case. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 369–373. IEEE (2014)

    Google Scholar 

  3. Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988)

    Article  Google Scholar 

  4. Cullum, J.: Numerical differentiation and regularization. SIAM J. Numer. Anal. 8, 254–265 (1971)

    Article  MathSciNet  Google Scholar 

  5. Fatehi, A., Huang, B.: Kalman filtering approach to multi-rate information fusion in the presence of irregular sampling rate and variable measurement delay. J. Process Control 53, 15–25 (2017)

    Article  Google Scholar 

  6. Ferrara, E.: Fast implementations of LMS adaptive filters. IEEE Trans. Acoust. Speech Signal Process. 28, 474–475 (1980)

    Article  Google Scholar 

  7. Filanovsky, I.M.: Bessel-Butterworth transitional filters. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, pp. 2105–2108 (2014)

    Google Scholar 

  8. Friedrichs, K.O.: The identity of weak and strong extensions of differential operators. Trans. Am. Math. Soc. 55, 132–151 (1944)

    Article  MathSciNet  Google Scholar 

  9. Hayes, M.H.: Statistical Digital Signal Processing and Modeling. Wiley, New York (2009)

    Google Scholar 

  10. Janecki, D., Cedro, L.: Determining of signal derivatives with the use of regressive differential filters. Przegląd Elektrotechniczny 87, 253–259 (2011). (in Polish)

    Google Scholar 

  11. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  12. Karam, L.J., Mcclellan, J.H.: Complex Chebyshev approximation for FIR filter design. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 42, 207–216 (1995)

    Article  Google Scholar 

  13. Kaya, I.: Obtaining controller parameters for a new PI-PD Smith predictor using autotuning. J. Process Control 13, 465–472 (2003)

    Article  Google Scholar 

  14. Knowles, I., Renka, R.J.: Methods for numerical differentiation of noisy data. Electron. J. Differ. Equ. 21, 235–246 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Knowles, I., Wallace, R.: A variational method for numerical differentiation. Numer. Math. 70, 91–110 (1995)

    Article  MathSciNet  Google Scholar 

  16. Krämer, D., King, R.: A hybrid approach for bioprocess state estimation using NIR spectroscopy and a sigma-point Kalman filter. J. Process Control (2017)

    Google Scholar 

  17. Miadlicki, K., Pajor, M., Sakow, M.: Loader crane working area monitoring system based on LIDAR scanner. In: Advances in Manufacturing, pp. 465–474. Springer (2018)

    Google Scholar 

  18. Miądlicki, K., Pajor, M., Saków, M.: Ground plane estimation from sparse LIDAR data for loader crane sensor fusion system. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 717–722. IEEE (2017)

    Google Scholar 

  19. Miądlicki, K., Pajor, M., Saków, M.: Real-time ground filtration method for a loader crane environment monitoring system using sparse LIDAR data. In: 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), pp. 207–212. IEEE (2017)

    Google Scholar 

  20. Okulski, M., Ławryńczuk, M.: A cascade PD controller for heavy self-balancing robot. In: Conference on Automation, pp. 183–192. Springer (2018)

    Google Scholar 

  21. Oppenheim, A.V.: Discrete-Time Signal Processing. Pearson Education India, Bangalore (1999)

    Google Scholar 

  22. Owczarek, P., Goslinski, J., Rybarczyk, D., et al.: Modeling and 3D simulation of an electro-hydraulic manipulator controlled by vision system with Kalman filter. In: Advances in Manufacturing, pp. 375–384. Springer (2018)

    Google Scholar 

  23. Piątek, P., Baranowski, J., Zagórowska, M., et al.: Bi-fractional filters, part 1: left half-plane case. In: Advances in Modelling and Control of Non-Integer-Order Systems, pp. 81–90. Springer (2015)

    Google Scholar 

  24. Psychalinos, C., Tsirimokou, G., Elwakil, A.S.: Switched-capacitor fractional-step butterworth filter design. Circ. Syst. Sig. Process. 35, 1377–1393 (2016)

    Article  MathSciNet  Google Scholar 

  25. Ra, W.S., Whang, I.H.: Recursive weighted robust least squares filter for frequency estimation. In: 2006 SICE-ICASE International Joint Conference, Busan, South Korea, pp. 774–778 (2006)

    Google Scholar 

  26. Raja, G.L., Ali, A.: Smith predictor based parallel cascade control strategy for unstable and integrating processes with large time delay. J. Process Control 52, 57–65 (2017)

    Article  Google Scholar 

  27. Rodríguez, C., Normey-Rico, J., Guzmán, J., et al.: On the filtered Smith predictor with feedforward compensation. J. Process Control 41, 35–46 (2016)

    Article  Google Scholar 

  28. Rybarczyk, D., Owczarek, P., Myszkowski, A.: Development of force feedback controller for the loader crane. In: Advances in Manufacturing, pp. 345–354. Springer (2018)

    Google Scholar 

  29. Saków, M.: Real-time and low phase shift noisy signal differential estimation dedicated to teleoperation systems, pp. 132–141. Springer International Publishing, Cham (2018)

    Google Scholar 

  30. Saków, M., Marchelek, K.: Model-free and time-constant prediction for closed-loop systems with time delay. Control Eng. Pract. 81, 1–8 (2018)

    Article  Google Scholar 

  31. Saków, M., Marchelek, K., Parus, A., et al.: Signal Prediction in Bilateral Teleoperation with Force-Feedback, pp. 311–323. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  32. Saków, M., Miądlicki, K.: Transport delay and first order inertia time signal prediction dedicated to teleoperation, pp. 142–151. Springer International Publishing, Cham (2018)

    Google Scholar 

  33. Saków, M., Miądlicki, K., Parus, A.: Self-sensing teleoperation system based on 1-dof pneumatic manipulator. J. Autom. Mob. Robot. Intell. Syst. 11, 64–76 (2017)

    Google Scholar 

  34. Saków, M., Parus, A., Miądlicki, K.: LS filter and its implementation into the control unit of the master-slave system with force-feedback. Modelowanie inżynierskie 34, 107–117 (2017). (in Polish)

    Google Scholar 

  35. Sakow, M., Parus, A., Pajor, M., et al.: Unilateral hydraulic telemanipulation system for operation in machining work area. In: Advances in Manufacturing, pp. 415–425. Springer (2018)

    Google Scholar 

  36. Saków, M., Parus, A., Pajor, M., et al.: Nonlinear inverse modeling with signal prediction in bilateral teleoperation with force-feedback. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 141–146. IEEE (2017)

    Google Scholar 

  37. Schoenberg, I.J.: Spline functions and the problem of graduation. Proc. Natl. Acad. Sci. 52, 947–950 (1964)

    Article  MathSciNet  Google Scholar 

  38. Tsirimokou, G., Psychalinos, C., Elwakil, A.S.: Digitally programmed fractional-order Chebyshev filters realizations using current-mirrors. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2337–2340 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Saków .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saków, M. (2020). Low Phase Shift Differential FIR Filter Design. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2019. AUTOMATION 2019. Advances in Intelligent Systems and Computing, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-030-13273-6_7

Download citation

Publish with us

Policies and ethics