Skip to main content

Factors Influencing the Soil to Plant Transfer of Uranium

  • Chapter
  • First Online:

Part of the book series: Radionuclides and Heavy Metals in the Environment ((RHME))

Abstract

Uranium is a radioactive and toxic element present in the environment, but its concentration can be enhanced locally by human activities. An accurate knowledge of uranium transfer from soil to plants is essential to assure an adequate radiological protection, especially for crops consumed as foodstuff for men or cattle. Worldwide variation of transfer parameters is high, about 5–6 orders of magnitude, but usually lower than for anthropogenic radionuclides, such as Cs or Sr. There are some variables, reviewed in this chapter, that can influence this variation, as type of crop, part of plant considered, degree of association to soil particles, organic matter, and occurrence of chemicals, among others.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ademola JA (2008) Exposure to high background radiation level in the tin mining area of Jos Plateau, Nigeria. J Radiol Prot 28:93–99

    Article  CAS  Google Scholar 

  • Al-Hamarneh IF, Alkhomashi N, Almasoud FI (2016) Study on the radioactivity and soil-to-plant transfer factor of 226Ra, 234U and 238U radionuclides in irrigated farms from the northwestern Saudi Arabia. J Environ Radioact 160:1–7

    Article  CAS  Google Scholar 

  • Alsabbagh AH, Abuqudaira TM (2017) Phytoremediation of Jordanian uranium-rich soil using Sunflower. Water Air Soil Pollut 228:219

    Article  Google Scholar 

  • Baeza A, Guillén J (2006) Influence of the soil bioavailability of radionuclides on the transfer of uranium and thorium to mushrooms. Appl Radiat Isotop 64:1020–1026

    Article  CAS  Google Scholar 

  • Basu M, Pande M, Bhadoria PBS, Mahapatra SC (2009) Potential fly-ash utilization in agriculture: a global review. Prog Nat Sci 19:1173–1186

    Article  CAS  Google Scholar 

  • Beazley MJ, Martinez RJ, Webb SM, Sobecky PA, Taillefert M (2011) The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils. Geochim Cosmochim Acta 75:5648–5663

    Article  CAS  Google Scholar 

  • Blanco P, Vera Tomé F, Lozano JC, Pérez Fernández MA (2010) Transfer of 238U, 230Th, 226Ra, and 210Pb from soils to tree and shrub species in a Mediterranean area. Appl Radiat Isotop 68:1154–1159

    Google Scholar 

  • Blanco P, Vera Tomé F, Lozano JC (2004) Sequential extraction for radionuclide fractionation in soil samples: a comparative study. App Radiat Isot 61:354–350

    Google Scholar 

  • Boghi A, Roose T, Kirk GJD (2018) A model of uranium uptake by plant roots allowing for root- induced changes in the soil. Environ Sci Technol 52:3536–3545

    Article  CAS  Google Scholar 

  • Canha N, Freitas MC, Anawar HM, Dionísio I, Dung HM, Pinto-Gomes C, Bettencourt A (2010) Characterization and phytoremediation of abandoned contaminated mining area in Portugal by INAA. J Radioanal Nucl Chem 286:577–582

    Article  CAS  Google Scholar 

  • Carvalho FP, Oliveira JM, Madruga MJ, Lopes I, Libânio A, Lubélia M (2006) Contamination of hydrographic bassins in uranium mining areas of Portugal. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the Environment. Springer, Heidelberg, pp 691–702

    Chapter  Google Scholar 

  • Carvalho FP, Madruga MJ, Reis MC, Alves JG, Oliveira JM, Gouveia J, Silva L (2007) Radioactivity in the environment around past radium and uranium mining sites of Portugal. J Environ Radioact 96:39–46

    Article  CAS  Google Scholar 

  • Carvalho FP, Oliveira JM, Malta M (2009) Analyses of radionuclides in soil, water, and agriculture products near the Urgeiriça uranium mine in Portugal. J Radioanal Nucl Chem 281:479–484

    Article  CAS  Google Scholar 

  • Carvalho FP, Oliveira JM, Malta M (2011) Radionuclides in plants growing on sludge and water from uranium mine water treatment. Ecol Engg 37:1058–1063

    Article  Google Scholar 

  • Černe M, Smodiš B, Štrok M, Jaćimović R (2010) Accumulation of 226Ra, 238U and 230Th by wetland plants in a vicinity of U-mill tailings at Žirovski vrh (Slovenia). J Radioanal Nucl Chem 286:323–327

    Article  Google Scholar 

  • Cook GT, Baxter MS, Duncan HJ, Toole J, Malcolmson R (1984) Geochemical association of plutonium in the Caithness environment. Nucl Inst Nucl Meth Phys Res 223:517–522

    Article  CAS  Google Scholar 

  • Davies HS, Cox F, Robinson CH, Pittman JK (2015) Radioactivity and the environment: technical approaches to understand the role of arbuscular mycorrhizal plants in radionuclide bioaccumulation. Front Plant Sci 6:580

    Article  Google Scholar 

  • Davies HS, Rosas-Moreno J, Cox F, Lythgoe P, Bewsher A, Livens FR, Robinson CH, Pittman JK (2018) Multiple environmental factors influence 238U, 232Th and 226Ra bioaccumulation in arbuscular mycorrhizal-associated plants. Sci Total Environ 640–641:921–934

    Article  Google Scholar 

  • Déjeant A, Bourva L, Sia R, Galoisy L, Calas G, Phrommavanh V, Descostes M (2014) Field analyses of 238U and 226Ra in two uranium mill tailings piles from Niger using portable HPGe detector. J Environ Radioact 137:105–112

    Article  Google Scholar 

  • Doering C, Medley P, Orr B, Urban D (2018) Whole organism to tissue concentration ratios derived from an Australian tropical dataset. J Environ Radioact 189:31–39

    Article  CAS  Google Scholar 

  • Enamorado S, Abril JM, Delgado A, Más JL, Polvillo O, Quintero JM (2014) Implications for food safety of the uptake by tomato of 25 trace-elements from a phosphogypsum amended soil from SW Spain. J Hazard Mater 266:122–131

    Article  CAS  Google Scholar 

  • Favas PJC, Pratas J, Mitra S, Sarkar SK, Venkatachalam P (2016) Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine. Sci Total Environ 568:350–368

    Article  CAS  Google Scholar 

  • Fawaris BH, Johanson JK (1995) Fractionation of caesium (137Cs) in a coniferous forest soil in central Sweden. Sci Tot Environ 170:221–228

    Article  CAS  Google Scholar 

  • Foulkes M, Millward G, Henderson S, Blake W (2017) Bioaccessibility of U, Th and Pb in solid wastes and soils from an abandoned uranium mine. J Environ Radioact 173:85–96

    Article  CAS  Google Scholar 

  • Galhardi JA, García-Tenorio R, Bonotto DM, Díaz Francés I, Gabriel Motta J (2017) Natural radionuclides in plants, soils and sediments affected by U-rich coal mining activities in Brazil. J Environ Radioact 177:37–47

    Article  CAS  Google Scholar 

  • Guillén J, Baeza A, Salas A, Muñoz JG, Muñoz A (2014) Radiological impact of fertilizers: production and use. In: López-Valdéz F, Fernández-Luqueño F (eds) Fertilizers: components, uses in agriculture and environmental impacts. Nova Science Publishers Inc, New York

    Google Scholar 

  • Guillén J, Muñoz-Serrano A, Baeza AS, Salas A (2018) Speciation of naturally occurring radionuclides in Mediterranean soils: bioavailabilty assessment. Environ Sci Pollut Res 25:6772–6782

    Article  Google Scholar 

  • Henner P, Brédoirea F, Tailliez A, Coppin F, Pierrisnard S, Camilleri V, Keller C (2018) Influence of root exudation of white lupine (Lupinus albus L.) on uranium phytoavailability in a naturally uranium-rich soil. J Environ Radioacty 190–191:39–50

    Article  Google Scholar 

  • Hormann V, Fischer HW (2013) Estimating the distribution of radionuclides in agricultural soils—dependence on soil parameters. J Environ Radioact 124:278–286

    Article  CAS  Google Scholar 

  • IAEA (2003) Extent of environmental contamination by Naturally Occurring Radioactive Material (NORM) and technological options for mitigation. Technical Reports Series No. 419. IAEA, Vienna

    Google Scholar 

  • IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environment. Technical Reports Series n°. 472. IAEA, Vienna

    Google Scholar 

  • Ibeanu IGE (2003) Tin mining and processing in Nigeria: cause for concern? J Environ Radioact 64:59–66

    Article  CAS  Google Scholar 

  • International Union of Radioecology (IUR) (1992) Protocol developed by the working Group on Soil to Plant Transfer, 1982–1992, Saint-Paul-lez-Durance, France

    Google Scholar 

  • Jeambrun M, Pourcelot L, Mercat C, Boulet B, Pelt E, Chabaux F, Cagnat X, Gauthier-Lafaye F (2012) Potential sources affecting the activity concentrations of 238U, 235U, 232Th and some decay products in lettuce and wheat samples. J Environ Monit 14:2902–2912

    Article  CAS  Google Scholar 

  • Kamunda C, Mathuthu M, Madhuku M (2016) An assessment of radiological hazards from gold mine tailings in the province of Gauteng in South Africa. Int J Environ Res Public Health 13:138

    Article  Google Scholar 

  • Kennedy VH, Sanchez AL, Oughton DH, Rowland AP (1997) Use of single and sequential chemical extractants to assess radionuclide and heavy metal availability from soils for root uptake. Analyst 122:89R–100R

    Article  CAS  Google Scholar 

  • Keser R, Görür FK, Akçay N, Okumuşoğlu NT (2011) Radionuclide concentration in tea, cabbage, orange, kiwi and soil and lifetime cancer risk due to gamma radioactivity in Rize, Turkey. J Sci Food Agric 91:987–991

    Article  CAS  Google Scholar 

  • Komosa A (2002) Study on geochemical association of plutonium in soil using sequential extraction procedure. J Radioanal Nucl Chem 252:121–128

    Article  CAS  Google Scholar 

  • Kritsananuwat R, Sahoo SK, Arae H, Fukushi M (2015) Distribution of 238U and 232Th in selected soil and plant samples as well as soil to plant transfer factors around Southern Thailand. J Radioanal Nucl Chem 303:2571–2577

    Article  CAS  Google Scholar 

  • Laurette J, Larue C, Llorens I, Jaillard D, Jouneau PH, Bourguignon J, Carrière M (2012a) Speciation of uranium in plants upon root accumulation and root-to-shoot translocation: a XAS and TEM study. Environ Exp Bot 77:87–95

    Article  CAS  Google Scholar 

  • Laurette J, Larue C, Marietb C, Brisset F, Khodja H, Bourguignon J, Carrière M (2012b) Influence of uranium speciation on its accumulation and translocation in three plant species: oilseed rape. sunflower and wheat. Environ Exp Bot 77:96–107

    Article  CAS  Google Scholar 

  • Li D, Kaplan DI (2012) Sorption coefficients and molecular mechanisms of Pu, U, Np, Am and Tc to Fe (hydr)oxides: a review. J Hazard Mater 243:1–18

    Article  CAS  Google Scholar 

  • Liang X, Hillier S, Pendlowski H, Gray N, Ceci A, Gadd GM (2015) Uranium phosphate biomineralization by fungi. Environ Microbiol 17:2064–2075

    Article  CAS  Google Scholar 

  • Lind OC, Stegnar P, Tolongutov B, Rosseland BO, Strømman G, Uralbekov B, Usubalieva A, Solomatina A, Gwynn JP, Lespukh E, Salbu B (2013) Environmental impact assessment of radionuclide and metal contamination at the former U site at Kadji Sai, Kyrgyzstan. J Environ Radioact 123:37–49

    Article  CAS  Google Scholar 

  • Lottermoser BG, Schnug E, Haneklaus S (2011) Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils. Sci Total Environ 409:3512–3519

    Article  CAS  Google Scholar 

  • Mihalík J, Tlustoš P, Szaková J (2010) Comparison of willow and sunflower for uranium phytoextraction induced by citric acid. J Radioanal Nucl Chem 285:279–285

    Article  Google Scholar 

  • Mihalík J, Henner P, Frelon S, Camilleri V, Février L (2012) Citrate assisted phytoextraction of uranium by sunflowers: Study of fluxes in soils and plants and resulting intra-planta distribution of Fe and U. Environ Exp Bot 77:249–258

    Article  Google Scholar 

  • Neiva AMR, Antunes IMHR, Carvalho PCS, Santos ACT (2016) Uranium and arsenic contamination in the former Mondego Sul uranium mine area, Central Portugal. J Geochem Explor 162:1–15

    Article  CAS  Google Scholar 

  • Papastefanou C, Stoulos S, Ioannidou A, Manolopoulou M (2006) The application of phosphogypsum in agriculture and the radiological impact. J Environ Radioact 89:188–198

    Article  CAS  Google Scholar 

  • Pavlotskaya FI (1974) Migration of radioactive products from global fallout in soils. Moskow, Atomizdat (In Russian)

    Google Scholar 

  • Pérez-Moreno SM, Gázquez MJ, Pérez-López R, Bolivar JP (2018) Validation of the BCR sequential extraction procedure for natural radionuclides. Chemosphere 198:397–408

    Article  Google Scholar 

  • Pourcelot L, Boulet B, Le Corre C, de Vismes Ott A, Cagnat X, Loyen J, Fayolle C, Van Hecke W, Martinez B, Petit J, Kaltenmeierd R, Gieré R (2011) Actinides and decay products in selected produce and bioindicators in the vicinity of a uranium plant. J Environ Monit 13:1327–1336

    Article  CAS  Google Scholar 

  • Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61

    Article  CAS  Google Scholar 

  • Regenspurg S, Margot-Roquier C, Harfouche M, Froidevaux P, Steinmann P, Junier P, Bernier-Latmani R (2010) Speciation of naturally-accumulated uranium in an organic-rich soil of an alpine region (Switzerland). Geochim Cosmochim Acta 74:2082–2098

    Article  CAS  Google Scholar 

  • Rigol A, Vidal M, Rauret G (2002) An overview of the effect of organic matter on soil-radiocaesium interaction: implications in root uptake. J Environ Radioact 58:191–216

    Article  CAS  Google Scholar 

  • Riise G, Bjørnstad HE, Lien HN, Oughton DH, Salbu B (1990) A study on radionuclide association with soil components using a sequential extraction procedure. J Radioanal Nucl Chem 142:531–538

    Article  CAS  Google Scholar 

  • Rout S, Ravi PM, Kumar A, Tripathi RM (2015) Study on speciation and salinity-induced mobility of uranium from soil. Environ Earth Sci 74:2273–2281

    Article  CAS  Google Scholar 

  • Santos-Francés F, Gil Pacheco E, Martínez-Graña A, Alonso Rojo P, Ávila Zarza C, García Sánchez A (2018) Concentration of uranium in the soils of the west of Spain. Environ Pollut 236:1–11

    Article  Google Scholar 

  • Schultz MK, Inn KGW, Lin ZC, Burnett WC, Smith G, Biegalski SR, Filliben J (1998) Identification of radionuclide partitioning in soils and sediments: determination of optimum conditions for the exchangeable fraction of the NIST standard sequential extraction protocol. Appl Radiat Isot 49:1289–1293

    Article  CAS  Google Scholar 

  • Skipperud L, Strømman G, Yunusov M, Stegnar P, Uralbekov B, Tilloboev H, Zjazjev G, Heier LS, Rosseland BO, Salbu B (2013) Environmental impact assessment of radionuclide and metal contamination at the former U sites Taboshar and Digmai, Tajikistan. J Environ Radioact 123:50–62

    Article  CAS  Google Scholar 

  • Sokolik GA, Ovsiannikova SV, Voinikava KV, Ivanova TG, Papenia MV (2014) Biological availability of 238U, 234U and 226Ra for wild berries and meadow grasses in natural ecosystems of Belarus. J Environ Radioact 127:155–162

    Article  CAS  Google Scholar 

  • Štrok M, Smodiš B (2013) Soil-to-plant transfer factors for natural radionuclides in grass in the vicinity of a former uranium mine. Nucl Engg Desig 261:279–284

    Article  Google Scholar 

  • Tessier A, Campbell PGC, Visón M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 57:844–851

    Article  Google Scholar 

  • Tuovinen TS, Roivainen P, Makkonen S, Kolehmainen M, Holopainen T, Juutilainen J (2011) Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species. Sci Total Environ 410–411:191–197

    Article  Google Scholar 

  • Tuovinen TS, Kolehmainen M, Roivainen P, Kumlin T, Makkonen S, Holopainen T, Juutilainen J (2016a) Nonlinear transfer of elements from soil to plants: impact on radioecological modelling. Radiat Environ Biophy 55:393–400

    Article  CAS  Google Scholar 

  • Tuovinen TS, Kasurinen A, Häikiö E, Tervahauta A, Makkonen S, Holopainen T, Juutilainen J (2016b) Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso and microcosms. Sci Total Environ 539:252–261

    Article  CAS  Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1993) Sources and effects of ionizing radiation: UNSCEAR 1993 Report to the General Assembly, with Scientific Annexes, New York.

    Google Scholar 

  • Vandenhove H, Vanhoudt N, Duquène L, Antunes K, Wannijn J (2014) Comparison of two sequential extraction procedures for uranium fractionation in contaminated soils. J Environ Radioact 137:1–9

    Article  CAS  Google Scholar 

  • Wichterey K, Sawallisch S (2002) Naturally occurring radionuclides in mushroom from uranium mining regions in Germany. Radioprotection 37:353–358

    Article  Google Scholar 

  • Xhixha G, Bezzon GP, Broggini C, Buso GP, Caciolli A, Callegari I, De Bianchi S, Fiorentini G, Guastaldi E, Mantovani F, Massa G, Menegazzo R, Mou L, Pasquini A, Rossi Alvarez C, Shyti M, Xhixha Kaçeli M (2013) The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization. J Radioanal Nucl Chem 295:445–457

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was partially made possible by the financial support granted to the LARUEX research group (FQM001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Guillén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guillén, J., Gómez-Polo, F.M. (2020). Factors Influencing the Soil to Plant Transfer of Uranium. In: Gupta, D., Walther, C. (eds) Uranium in Plants and the Environment. Radionuclides and Heavy Metals in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-14961-1_6

Download citation

Publish with us

Policies and ethics