Skip to main content

Uranium and Plants: Elemental Translocation and Phytoremediation Approaches

  • Chapter
  • First Online:
Uranium in Plants and the Environment

Abstract

Uranium (U) is a ubiquitous element in nature, and 238U is the most abundant radioactive isotope of uranium. Because of the use of U for military purposes in the past and increasing use of nuclear power during the last decades, U contamination in the environment, mainly as a consequence of mining, plays an increasing role. But also NORM (naturally occurring radioactive matter) industries release uranium and its progenies into the environment. Plants naturally incorporate U into their body via root uptake, where different factors play important roles and some plants are more efficient than other. This fact is made use of for plant-based remediation of contaminated sites. Selection of suitable plants that can uptake high amount of the element without affecting their growth is very important. This review deals with uranium translocation in plants with a potential for phytoremediation practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya C (2015) Microbial bioremediation of uranium: an overview. BARC Newslett. March–April: 27–30 (Online: www.barc.gov.in/publications/nl/2015/2015030407.pdf)

  • Acharya C, Apte SK (2013) Novel surface associated polyphosphate bodies sequester uranium in the filamentous, marine cyanobacterium, Anabaena torulosa. Metallomics 5:1595–1598

    Article  CAS  Google Scholar 

  • Acharya C, Joseph D, Apte SK (2009) Uranium sequestration by a marine cyanobacterium, Synechococcus elongatus strain BDU/7504. Bioresour Technol 100:2176–2181

    Article  CAS  Google Scholar 

  • Acharya C, Chandwadkar P, Apte SK (2012) Interaction of uranium with a filamentous, heterocystous, nitrogen-fixing cyanobacterium, Anabaena torulosa. Bioresour Technol 116:290–294

    Article  CAS  Google Scholar 

  • Amarillo National Resource Centre for Plutonium (ANRCP) (1998) Phytoaccumulation of chromium, uranium, and plutonium in plant systems (Online: https://pdfs.semanticscholar.org/b5bd/7e6656d9c1da24615d6ef3ad217d3843209a.pdf)

  • Anderson TA, Kruger EL, Coats JR (1994) Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant. Chemosphere 28:1551–1557

    Article  CAS  Google Scholar 

  • Baumann N, Arnold T, Haferburg G (2014) Uranium contents in plants and mushrooms grown on a uranium-contaminated site near Ronneburg in Eastern Thuringia/Germany. Environ Sci Pollut Res 21:6921–6929

    Article  CAS  Google Scholar 

  • Beazley MJ, Martinez RJ, Sobecky PA, Webb SM, Taillefert M (2007) Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface. Environ Sci Technol 41:5701–5707

    Article  CAS  Google Scholar 

  • Berlin M, Rudell B (1986) Uranium. In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook on the toxicology of metals, 2nd edn. Elsevier Science Publishers, Amsterdam, pp 623–637

    Google Scholar 

  • Boghi A, Roose T, Kirk GJD (2018) A model of Uranium uptake by plant roots allowing for root-induced changes in the soil. Environ Sci Technol 52:3536–3545

    Article  CAS  Google Scholar 

  • Bryan ND, Abrahamsen L, Evans N, Warwick P, Buckau G, Weng L, Van Riemsdijk WH (2012) The effects of humic substances on the transport of radionuclides: recent improvements in the prediction of behaviour and the understanding of mechanisms. Appl Geochem 27:378–389

    Article  CAS  Google Scholar 

  • Bunzl K, Kretner R, Schramel P, Szeles M, Winkler R (1995) Speciation of 238U, 226Ra, 210Pb, 228Ra, and Stable Pb in the soil near an exhaust ventilating shaft of a uranium mine. Geoderma 67:45–53

    Article  CAS  Google Scholar 

  • Charro E, Moyano A (2017) Soil and vegetation influence in plants natural radionuclides uptake at a uranium mining site. Rad Phys Chem 141:200–206

    Article  CAS  Google Scholar 

  • Chatterjee S, Singh L, Chattopadhyay B, Datta S, Mukhopadhyay SK (2012) A study on the waste metal remediation using floriculture at East Calcutta Wetlands, a Ramsar site in India. Environ Monit Assess 184:5139–5150

    Article  CAS  Google Scholar 

  • Chatterjee S, Mitra A, Datta S, Veer V (2013) Phytoremediation protocols: an overview. In: Gupta DK (ed) Plant Based Remediation Processes. Springer, Heidelberg, pp 1–18

    Google Scholar 

  • Chen B, Roos P, Zhu YG, Jakobsen I (2008) Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings. J Environ Radioact 99:801–810

    Article  CAS  Google Scholar 

  • Coyte RM, Jain RC, Srivastava SK, Sharma KC, Khalil A, Ma L, Vengosh A (2018) Large-scale uranium contamination of groundwater resources in India. Environ Sci Technol Lett 5:341–347

    Article  CAS  Google Scholar 

  • Cumberland SA, Douglas G, Grice K, Moreau JW (2016) Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes. Earth Sci Rev 159:160–185

    Article  CAS  Google Scholar 

  • Dalcorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:1–5

    Article  Google Scholar 

  • Davies FT Jr, Puryear JD, Newton RJ (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158:777–786

    Article  CAS  Google Scholar 

  • Davies HS, Cox F, Robinson CH, Pittman JK (2015) Radioactivity and the environment: technical approaches to understand the role of arbuscular mycorrhizal plants in radionuclide bioaccumulation. Front Plant Sci 6:580

    Article  Google Scholar 

  • Davis JA, Meece DE, Kohler M, Curtis GP (2004) Approaches to surface complexation modeling of Uranium (VI) adsorption on aquifer sediments. Geochim Cosmochim Acta 68:3621–3641

    Article  CAS  Google Scholar 

  • De Boulois HD, Joner EJ, Leyval C, Jakobsen I, Chen BD, Roos P, Thiry Y, Rufykiri G, Declerck S (2008) Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants. J Environ Radioact 99:775–784

    Article  Google Scholar 

  • Dubey RS (2011) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton, FL, pp 177–204

    Google Scholar 

  • Duff MC, Amrhein C (1996) Uranium(VI) adsorption on goethite and soil in soil carbonate solutions. Soil Sci Soc Am J 60:1393–1400

    Article  CAS  Google Scholar 

  • Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997) Removal of uranium from water using terrestrial plants. Environ Sci Technol 31:3468–3474

    Article  CAS  Google Scholar 

  • Ebbs SD, Brady DJ, Kochian LV (1998) Role of uranium speciation in the uptake and translocation of uranium by plants. J Exp Bot 49:1183–1190

    Article  CAS  Google Scholar 

  • Entry JA, Vance NC, Hamilton MA, Zabowski D, Watrud LS, Adriano DC (1996) Phytoremediation of soil contaminated with low concentrations of radionuclides. Water Air Soil Pollut 88:167–176

    CAS  Google Scholar 

  • Favas PJC, Pratas J (2013) Uptake of uranium by native aquatic plants: potential for bio indication and phytoremediation. E3S Web of Conferences1.13007. doi: 10.1051/e3sconf/20130113007 (Online: http://www.e3s-conferences.org or https://doi.org/10.1051/e3sconf/20130113007)

  • Favas PJC, Prates J, Mitra S, Sarkar SK, Venkatachalam P (2016) Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine. Sci Total Environ 568:350–368

    Article  CAS  Google Scholar 

  • Gadd GM, Fomina M (2011) Uranium and fungi. Geomicrobiol J 28:471–482

    Article  CAS  Google Scholar 

  • Greipsson S (2011) Phytoremediation. Nature Education Knowledge 3:7

    Google Scholar 

  • Grenthe I, Fuger J, Konings R, Lemire RJ, Muller AB, Nguyen-Trung C, Wanner J (1992) The chemical thermodynamics of uranium. Elsevier, New York

    Google Scholar 

  • Gulati KL, Oswal MC, Nagpaul KK (1980) Assimilation of uranium by wheat and tomato plants. Plant Soil 55:55–59

    Article  CAS  Google Scholar 

  • Gupta DK (2013) Plant Based Remediation Process. Springer, Heidelberg

    Google Scholar 

  • Gupta DK, Voronina A (2018) Remediation measures for radioactively contaminated areas. Springer, Cham

    Google Scholar 

  • Gupta DK, Walther C (2014) Radionuclide contamination and remediation through plants. Springer, Cham

    Book  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161

    Article  CAS  Google Scholar 

  • Gupta DK, Chatterjee S, Datta S, Voronina AV, Walther C (2016a) Radionuclides: accumulation and transport in plants. Rev Environ Contam Toxicol 241:139–160

    Google Scholar 

  • Gupta DK, Tawussi F, Hamann L, Walther C (2016b) Moderate uranium disturbs the nutritional status and induces oxidative stress in Pisum sativum L. J Plant Physiol Pathol 4:1

    Google Scholar 

  • Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik YK, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008

    Article  CAS  Google Scholar 

  • Huang J, Zhang Y, Peng JS, Zhong C, Yi HY, Ow DW, Gong JM (2012) Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol 158:1779–1788

    Google Scholar 

  • Kumar R, Nongkhlaw M, Acharya C, Joshi SR (2013a) Uranium (U) tolerant bacterial diversity from U ore deposit of Domiasiat in North-East India and its prospective utilisation in bioremediation. Microb Environ 28:33–41

    Article  Google Scholar 

  • Kumar R, Nongkhlaw M, Acharya C, Joshi SR (2013b) Bacterial community structure from the perspective of the uranium ore deposits of Domiasiat in India. Proc Natl Acad Sci India Sect B Biol Sci 83:485–497

    Article  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Google Scholar 

  • LeDuc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520

    Article  CAS  Google Scholar 

  • Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium-contaminated groundwater. J Hazard Mater 173:589–596

    Article  CAS  Google Scholar 

  • Lloyd NS, Chenery SR, Parrish RR (2009) The distribution of depleted uranium contamination in Colonie, NY, USA. Sci Total Environ 408:397–407

    Article  CAS  Google Scholar 

  • Lozano JC, Rodríguez PB, Tomé FV, Calvo CP (2011) Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments. J Hazard Mater 198:224–231

    Article  CAS  Google Scholar 

  • Malaviya P, Singh A (2012) Phytoremediation strategies for remediation of uranium-contaminated environments: a review. Crit Rev Environ Sci Technol 42:2575–2647

    Article  CAS  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals. Springer briefs in biometals. Springer, New York, pp 27–53

    Chapter  Google Scholar 

  • Meinrath G, Kato Y, Kimura T, Yoshida Z (1996) Solid-aqueous phase equilibria of uranium(VI) under ambient conditions. Radiochemica Acta 75:159–167

    CAS  Google Scholar 

  • Mitchell N, Pérez-Sánchez D, Thorne MC (2013) A review of the behaviour of U-238 series radionuclides in soils and plants. J Radiol Prot 33:R17–R48

    Article  CAS  Google Scholar 

  • Mkandawire M, Taubert B, Dudel E (2004) Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytorem 6:347–362

    Article  CAS  Google Scholar 

  • Newsome L, Morris K, Lloyd J (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    Article  CAS  Google Scholar 

  • Nolan J, Weber KA (2015) Natural uranium contamination in major U.S. aquifers linked to nitrate. Environ Sci Technol 2:215–220

    Article  CAS  Google Scholar 

  • Nuclear Energy Agency (NEA) 2016 Uranium 2016: Resources, Production and Demand (Online: http://www.oecd-nea.org/ndd/pubs/2016/7301-uranium-2016.pdf)

  • Pinney SM, Freyberg RW, Levine GH, Brannen DE, Mark LS, Nasuta JM, Tebbe CD, Buckholz JM, Wones R (2003) Health effects in community residents near a uranium plant at Ferland, Ohio, USA. Intl J Occup Med Environ Health 16:139–153

    Google Scholar 

  • Prasad MNV (2011) A state-of-the-art report on bioremediation, its applications to contaminated sites in India. Ministry of Environment & Forests, Government of India (Online: http://www.moef.nic.in/downloads/public-information/BioremediationBook.pdf)

  • Pratas J, Fava PJC, Paulo C, Rodrigues N, Prasad MNV (2012) Uranium accumulation by aquatic plants from uranium-contaminated water in central Portugal. Int J Phytorem 14:221–234

    Article  CAS  Google Scholar 

  • Rai UN, Pal A (1999) Toxic metals and phytoremediation. Enviro News, Newsletter of International Society of Environmental Botanists, India, vol 5:4

    Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils, NATO Science series IV: Earth and Environmental Sciences. Springer, New York, pp 25–52

    Chapter  Google Scholar 

  • Rufyikiri G, Thiry Y, Wang L, Delvaux B, Declerck S (2002) Uranium uptake and translocation by the arbuscular mycorrhizal fungus, Glomus intraradices, under root-organ culture conditions. New Phytol 156:275–281

    Article  CAS  Google Scholar 

  • Rufyikiri G, Declerck S, Thiry Y (2004) Comparison of 233U and 33P uptake and translocation by the arbuscular mycorrhizal fungus Glomus intraradices in root organ culture conditions. Mycorrhiza 14:203–207

    Article  Google Scholar 

  • Saenen E, Horemans N, Vanhoudt N, Vandenhove H, Biermans G, Van Hees M, Wannijn J, Vangronsveld J, Cuypers A (2015) Oxidative stress responses induced by uranium exposure at low pH in leaves of Arabidopsis thaliana plants. J Environ Radioact 150:36–43

    Article  CAS  Google Scholar 

  • Shaker-Koohi S (2014) Role of arbuscular mycorrhizal (AM) fungi in phytoremediation of soils contaminated: a review. Int J Adv Biol Biomed Res 2:1854–1864

    CAS  Google Scholar 

  • Sheppard MI, Thibault DH (1992) Desorption and extraction of selected heavy metals from soils. Soil Sci Soc Am J 56:415–423

    Article  CAS  Google Scholar 

  • Sheppard SC, Evenden WG, Anderson AJ (1992) Multiple assays of uranium in soil. Environ Toxicol Wat Qual 7:275–294

    Article  CAS  Google Scholar 

  • Shtangeeva I, Lin X, Tuerler A, Rudneva E, Surin V, Henkelmann R (2006) Thorium and uranium uptake and bioaccumulation by wheat-grass and plantain. For Snow Land Res 2:181–190

    Google Scholar 

  • Stojanović MD, Mihajlović ML, Milojković JV, Lopičić ZR, Adamović M, Stankovic S (2012) Efficient phytoremediation of uranium mine tailings by tobacco. Environ Chem Lett 10:377–381

    Article  Google Scholar 

  • Tang S, Willey NJ (2003) Uptake of 134Cs by four species from the Asteraceae and two varieties from the Chenopodiaceae grown in two types of Chinese soil. Plant Soil 250:75–81

    Article  CAS  Google Scholar 

  • Tasat DR, Orona NS, Bozal C, Ubios AM, Cabrini RL (2012) Intracellular metabolism of uranium and the effects of bisphosphonates on its toxicity. doi: 10.5772/29245 (Online: http://cdn.intechopen.com/pdfs/26773/InTech-Intracellular_metabolism_of_uranium_and_the_effects_of_bisphosphonates_on_its_toxicity.pdf)

  • Tawussi F, Walther C, Gupta DK (2017) Does low uranium concentration generates phytotoxic symptoms in Pisum sativum L. in nutrient medium? Environ Sci Pollut Res 24:22741–22751

    Article  CAS  Google Scholar 

  • Tomé FV, Rodríguez BP, Lozano JC (2008) Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci Total Environ 393:351–357

    Article  Google Scholar 

  • UNSCEAR (2010) Sources and effects of ionizing radiation, UNSCEAR 2008. In: Report to the general assembly with scientific annexes, vol 1 (Online: http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_Annex_A.pdf)

  • Walther C, Gupta DK (2015) Radionuclides in the environment: influence of chemical speciation and plant uptake on radionuclide migration. Springer, Cham

    Book  Google Scholar 

  • WHO (2012) Uranium in drinking-water: guidelines for drinking-water quality (online: http://www.who.int/water_sanitation_health/publications/2012/background_uranium.pdf, on 24-9-2018)

  • World Nuclear Association (WNA) (2017) The nuclear fuel report 2017 (Online: http://www.world-nuclear.org/our-association/publications/publications-for-sale/nuclear-fuel-report.aspx)

  • Yue YC, Li MH, Wang HB, Zhang BL, He W (2018) The toxicological mechanisms and detoxification of depleted uranium exposure. Environ Health Prevent Med 23:18

    Article  Google Scholar 

Download references

Acknowledgements

S.C. sincerely acknowledges and thanks Director, DRL (DRDO), Assam, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, D.K., Chatterjee, S., Mitra, A., Voronina, A., Walther, C. (2020). Uranium and Plants: Elemental Translocation and Phytoremediation Approaches. In: Gupta, D., Walther, C. (eds) Uranium in Plants and the Environment. Radionuclides and Heavy Metals in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-14961-1_7

Download citation

Publish with us

Policies and ethics