Skip to main content

Performance Evaluation of WMNs by WMN-PSOSA System Considering Chi-square and Exponential Client Distributions

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2019)

Abstract

Wireless Mesh Networks (WMNs) have many advantages such as low cost and increased high-speed wireless Internet connectivity, therefore WMNs are becoming an important networking infrastructure. In our previous work, we implemented a Particle Swarm Optimization (PSO) based simulation system for node placement in WMNs, called WMN-PSO. Also, we implemented a simulation system based on Simulated Annealing (SA) for solving node placement problem in WMNs, called WMN-SA. Then, we implemented a hybrid simulation system based on PSO and SA, called WMN-PSOSA. In this paper, we analyse the performance of WMNs by using WMN-PSOSA considering two types of mesh clients distributions. Simulation results show that a good performance is achieved for Exponential distribution compared with the case of Chi-square distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)

    MATH  Google Scholar 

  2. Barolli, A., Sakamoto, S., Barolli, L., Takizawa, M.: Performance analysis of simulation system based on particle swarm optimization and distributed genetic algorithm for WMNs considering different distributions of mesh clients. In: International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 32–45. Springer (2018)

    Google Scholar 

  3. Barolli, A., Sakamoto, S., Ozera, K., Barolli, L., Kulla, E., Takizawa, M.: Design and implementation of a hybrid intelligent system based on particle swarm optimization and distributed genetic algorithm. In: International Conference on Emerging Internetworking, Data & Web Technologies, pp. 79–93. Springer (2018)

    Google Scholar 

  4. Girgis, M.R., Mahmoud, T.M., Abdullatif, B.A., Rabie, A.M.: Solving the wireless mesh network design problem using genetic algorithm and simulated annealing optimization methods. Int. J. Comput. Appl. 96(11), 1–10 (2014)

    Google Scholar 

  5. Goto, K., Sasaki, Y., Hara, T., Nishio, S.: Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks. Mobile Inf. Syst. 9(4), 295–314 (2013)

    Google Scholar 

  6. Hwang, C.R.: Simulated annealing: theory and applications. Acta Applicandae Mathematicae 12(1), 108–111 (1988)

    Google Scholar 

  7. Inaba, T., Elmazi, D., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A secure-aware call admission control scheme for wireless cellular networks using fuzzy logic and its performance evaluation. J. Mobile Multimed. 11(3&4), 213–222 (2015)

    Google Scholar 

  8. Inaba, T., Obukata, R., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of a QoS-aware fuzzy-based CAC for LAN access. Int. J. Space-Based Situated Comput. 6(4), 228–238 (2016)

    Google Scholar 

  9. Inaba, T., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A testbed for admission control in WLAN: a fuzzy approach and its performance evaluation. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 559–571. Springer (2016)

    Google Scholar 

  10. Lim, A., Rodrigues, B., Wang, F., Xu, Z.: k-Center Problems with Minimum Coverage. In: Computing and Combinatorics, pp. 349–359 (2004)

    Google Scholar 

  11. Maolin, T., et al.: Gateways placement in backbone wireless mesh networks. Int. J. Commun. Netw. Syst. Sci. 2(1), 44 (2009)

    Google Scholar 

  12. Matsuo, K., Sakamoto, S., Oda, T., Barolli, A., Ikeda, M., Barolli, L.: Performance analysis of WMNs by WMN-GA simulation system for two WMN architectures and different TCP congestion-avoidance algorithms and client distributions. Int. J. Commun. Netw. Distrib. Syst. 20(3), 335–351 (2018)

    Google Scholar 

  13. Naka, S., Genji, T., Yura, T., Fukuyama, Y.: A hybrid particle swarm optimization for distribution state estimation. IEEE Trans. Power Syst. 18(1), 60–68 (2003)

    Google Scholar 

  14. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Google Scholar 

  15. Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A comparison study of simulated annealing and genetic algorithm for node placement problem in wireless mesh networks. J. Mobile Multimed. 9(1–2), 101–110 (2013)

    Google Scholar 

  16. Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A comparison study of hill climbing, simulated annealing and genetic algorithm for node placement problem in WMNs. J. High Speed Netw. 20(1), 55–66 (2014)

    Google Scholar 

  17. Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A simulation system for WMN based on SA: performance evaluation for different instances and starting temperature values. Int. J. Space-Based Situated Comput. 4(3–4), 209–216 (2014)

    Google Scholar 

  18. Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Performance evaluation considering iterations per phase and SA temperature in WMN-SA system. Mobile Inf. Syst. 10(3), 321–330 (2014)

    Google Scholar 

  19. Sakamoto, S., Lala, A., Oda, T., Kolici, V., Barolli, L., Xhafa, F.: Application of WMN-SA simulation system for node placement in wireless mesh networks: a case study for a realistic scenario. Int. J. Mobile Comput. Multimed. Commun. (IJMCMC) 6(2), 13–21 (2014)

    Google Scholar 

  20. Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: An integrated simulation system considering WMN-PSO simulation system and network simulator 3. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 187–198. Springer (2016)

    Google Scholar 

  21. Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks. Int. J. Commun. Netw. Distrib. Syst. 17(1), 1–13 (2016)

    Google Scholar 

  22. Sakamoto, S., Obukata, R., Oda, T., Barolli, L., Ikeda, M., Barolli, A.: Performance analysis of two wireless mesh network architectures by WMN-SA and WMN-TS simulation systems. J. High Speed Netw. 23(4), 311–322 (2017)

    Google Scholar 

  23. Sakamoto, S., Ozera, K., Barolli, A., Ikeda, M., Barolli, L., Takizawa, M.: Implementation of an intelligent hybrid simulation systems for WMNs based on particle swarm optimization and simulated annealing: performance evaluation for different replacement methods. Soft Comput., 1–7 (2017)

    Google Scholar 

  24. Sakamoto, S., Ozera, K., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of intelligent hybrid systems for node placement in wireless mesh networks: a comparison study of WMN-PSOHC and WMN-PSOSA. In: International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 16–26. Springer (2017)

    Google Scholar 

  25. Sakamoto, S., Ozera, K., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of WMN-PSOHC and WMN-PSO simulation systems for node placement in wireless mesh networks: a comparison study. In: International Conference on Emerging Internetworking, Data & Web Technologies, pp. 64–74. Springer (2017)

    Google Scholar 

  26. Sakamoto, S., Ozera, K., Barolli, A., Barolli, L., Kolici, V., Takizawa, M.: Performance evaluation of WMN-PSOSA considering four different replacement methods. In: International Conference on Emerging Internetworking, Data & Web Technologies, pp. 51–64. Springer (2018)

    Google Scholar 

  27. Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L.: Implementation of intelligent hybrid systems for node placement problem in WMNs considering particle swarm optimization, hill climbing and simulated annealing. Mobile Netw. Appl. 23(1), 27–33 (2018)

    Google Scholar 

  28. Wang, J., Xie, B., Cai, K., Agrawal, D.P.: Efficient mesh router placement in wireless mesh networks. In: Proceedings of IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS-2007), pp. 1–9 (2007)

    Google Scholar 

  29. Xhafa, F., Sanchez, C., Barolli, L.: Ad hoc and neighborhood search methods for placement of mesh routers in wireless mesh networks. In: Proceedings of 29th IEEE International Conference on Distributed Computing Systems Workshops (ICDCS-2009), pp. 400–405 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Sakamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakamoto, S., Barolli, L., Okamoto, S. (2020). Performance Evaluation of WMNs by WMN-PSOSA System Considering Chi-square and Exponential Client Distributions. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2019. Advances in Intelligent Systems and Computing, vol 926. Springer, Cham. https://doi.org/10.1007/978-3-030-15032-7_34

Download citation

Publish with us

Policies and ethics