Skip to main content

Multi-Fluid Extensions of MHD and Their Implications on Waves and Instabilities

  • Chapter
  • First Online:
Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 591))

Abstract

This chapter provides a brief overview on how the inclusion of extra physics in standard magnetohydrodynamics affects waves and instabilities. The inclusion of such extra physics is important for many plasma systems, such as planetary ionospheres and magnetospheres, the interstellar medium and molecular clouds and also the atmospheres of cool stars such as the Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • I. Ballai, R. Oliver, M. Alexandrou, Dissipative instability in partially ionised prominence plasmas. Astron. Astrophys. 577, A82 (2015)

    Article  Google Scholar 

  • J.L. Ballester, I. Alexeev, M. Collados, T. Downes, R.F. Pfaff, H. Gilbert, M. Khodachenko, E. Khomenko, I.F. Shaikhislamov, R. Soler, E. Vázquez-Semadeni, T. Zaqarashvili, Partially ionized plasmas in astrophysics. Space Sci. Rev. 214, 58 (2018)

    Article  Google Scholar 

  • J.A. Bittencourt, Fundamentals of Plasma Physics (Pergamon Press, Oxford, 1986)

    MATH  Google Scholar 

  • S.I. Braginskii, Transport processes in a plasma, in Reviews of Plasma Physics, ed. by M.A. Leontovich, vol. 1 (Consultants Bureau, New York, 1965), p. 205

    Google Scholar 

  • P.S. Cally, Dispersion relations, rays and ray splitting in magnetohelioseismology. Philos. Trans. Roy. Soc. Lond. Ser. A 364, 333–349 (2006)

    Article  Google Scholar 

  • P.S. Cally, M. Goossens, Three-dimensional MHD wave propagation and conversion to Alfvén waves near the solar surface. I. Direct numerical solution. Sol. Phys. 251, 251–265 (2008)

    Google Scholar 

  • P.S. Cally, E. Khomenko, Fast-to-Alfvén mode conversion mediated by the Hall current. I. Cold plasma model. Astrophys. J. 814, 106 (2015)

    Article  Google Scholar 

  • M. Carlsson, A computer program for solving multi-level non-LTE radiative transfer problems in moving or static atmospheres. Uppsala Astronomical Observatory Reports, no 33 (1986)

    Google Scholar 

  • G.E. Ciolek, W.G. Roberge, Time-dependent, multifluid, magnetohydrodynamic shock waves with grain dynamics. I. Formulation and numerical tests. Astrophys. J. 567, 947–961 (2002)

    Article  Google Scholar 

  • B. De Pontieu, G. Haerendel, Weakly damped Alfvén waves as drivers for spicules. Astrophys. J. 338, 729 (1998)

    Google Scholar 

  • B. De Pontieu, P.C.H. Martens, H.S. Hudson, Chromospheric damping of Alfvén waves. Astrophys. J. 558, 859–871 (2001)

    Article  Google Scholar 

  • A.J. Díaz, R. Soler, J.L. Ballester, Rayleigh-Taylor instability in partially ionized compressible plasmas. Astrophys. J. 754, 41 (2012)

    Article  Google Scholar 

  • A.J. Díaz, E. Khomenko, M. Collados, Rayleigh-Taylor instability in partially ionized compressible plasmas: one fluid approach. Astron. Astrophys. 564, A97 (2014)

    Article  Google Scholar 

  • B.T. Draine, Multicomponent, reacting MHD flows. Mon. Not. R. Astron. Soc. 220, 133–148 (1986)

    Article  Google Scholar 

  • S.A.E.G. Falle, A numerical scheme for multifluid magnetohydrodynamics. Mon. Not. R. Astron. Soc. 344, 1210–1218 (2003)

    Article  Google Scholar 

  • J.M. Fontenla, Chromospheric plasma and the Farley-Buneman instability in solar magnetic regions. Astron. Astrophys. 442, 1099–1103 (2005)

    Article  Google Scholar 

  • J.M. Fontenla, W.K. Peterson, J. Harder, Chromospheric heating by the Farley-Buneman instability. Astron. Astrophys. 480, 839–846 (2008)

    Article  Google Scholar 

  • G. Gogoberidze, Y. Voitenko, S. Poedts, M. Goossens, Farley-Buneman instability in the solar chromosphere. Astrophys. J. Lett. 706, L12–L16 (2009)

    Article  Google Scholar 

  • G. Gogoberidze, Y. Voitenko, S. Poedts, J. De Keyser, Electrostatic plasma instabilities driven by neutral gas flows in the solar chromosphere. Mon. Not. R. Astron. Soc. 438, 3568–3576 (2014)

    Article  Google Scholar 

  • P.A. Gonzalez-Morales, E. Khomenko, P. Cally, Fast-to-Alfvén mode conversion mediated by Hall current. II Application to the solar atmosphere. Astrophys. J. 870, 94 (2019)

    Article  Google Scholar 

  • G. Haerendel, Weakly damped Alfvén waves as drivers of solar chromospheric spicules. Nature 360, 241–243 (1992)

    Article  Google Scholar 

  • J.D. Huba, NRL Plasma Formulary (Naval Research Laboratory, Washington, DC, 1998)

    Google Scholar 

  • P. Judge, An explanation of the solar transition region. Astrophys. J. Lett. 683, L87–L90 (2008)

    Article  Google Scholar 

  • M.L. Khodachenko, T.D. Arber, H.O. Rucker, A. Hanslmeier, Collisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere. Astron. Astrophys. 422, 1073 (2004)

    Article  Google Scholar 

  • M.L. Khodachenko, H.O. Rucker, R. Oliver, T.D. Arber, A. Hanslmeier, On the mechanisms of MHD wave damping in the partially ionized solar plasmas. Adv. Space Res. 37, 447 (2006)

    Article  Google Scholar 

  • E. Khomenko, M. Collados, Numerical modeling of magnetohydrodynamic wave propagation and refraction in sunspots. Astrophys. J. 653, 739–755 (2006)

    Article  Google Scholar 

  • E. Khomenko, M. Collados, Heating of the magnetized solar chromosphere by partial ionization effects. Astrophys. J. 747, 87 (2012)

    Article  Google Scholar 

  • E. Khomenko, M. Collados, Oscillations and waves in sunspots. Living Rev. Sol. Phys. 12, 6 (2015)

    Article  Google Scholar 

  • E. Khomenko, M. Collados, T. Felipe, Nonlinear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes. Solar Phys. 251, 589–611 (2008)

    Article  Google Scholar 

  • E. Khomenko, M. Collados, A. Díaz, N. Vitas, Fluid description of multi-component solar partially ionized plasma. Phys. Plasmas 21(9), 092901 (2014)

    Article  Google Scholar 

  • E. Khomenko, N. Vitas, M. Collados, A. de Vicente, Numerical simulations of quiet Sun magnetic fields seeded by the Biermann battery. Astron. Astrophys. 604, A66 (2017)

    Article  Google Scholar 

  • N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill Kogakusha, Tokyo, 1973)

    Book  Google Scholar 

  • V. Krasnoselskikh, G. Vekstein, H.S. Hudson, S.D. Bale, W.P. Abbett, Generation of electric currents in the chromosphere via neutral-ion drag. Astrophys. J. 724, 1542–1550 (2010)

    Article  Google Scholar 

  • R. Kulsrud, W.P. Pearce, The effect of wave-particle interactions on the propagation of cosmic rays. Astrophys. J. 156, 445 (1969)

    Article  Google Scholar 

  • R.M. Kulsrud, E.G. Zweibel, On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71, 046901 (2008)

    Article  Google Scholar 

  • J.E. Leake, T.D. Arber, The emergence of magnetic flux through a partially ionised solar atmosphere. Astron. Astrophys. 450, 805–818 (2006)

    Article  Google Scholar 

  • J.E. Leake, C.R. DeVore, J.P. Thayer, A.G. Burns, G. Crowley, H.R. Gilbert, J.D. Huba, J. Krall, M.G. Linton, V.S. Lukin, W. Wang, Ionized plasma and neutral gas coupling in the sun’s chromosphere and earth’s ionosphere/thermosphere. Space Sci. Rev. 184, 107–172 (2014)

    Article  Google Scholar 

  • A.E. Lifschitz, Magnetohydrodynamics and Spectral Theory (Kluwer Academic Publisher, Dordrecht, 1989)

    Book  Google Scholar 

  • C.A. Madsen, Y.S. Dimant, M.M. Oppenheim, J.M. Fontenla, The multi-species Farley-Buneman instability in the solar chromosphere. Astrophys. J. 783, 128 (2014)

    Article  Google Scholar 

  • D. Mihalas, Stellar Atmospheres (Pergamon Press, Oxford, 1986)

    Google Scholar 

  • T.C. Mouschovias, G.E. Ciolek, S.A. Morton, Hydromagnetic waves in weakly-ionized media - I. Basic theory, and application to interstellar molecular clouds. Mon. Not. R. Astron. Soc. 415, 1751–1782 (2011)

    Article  Google Scholar 

  • B.P. Pandey, M. Wardle, Hall magnetohydrodynamics of partially ionized plasmas. Mon. Not. R. Astron. Soc. 385, 2269–2278 (2008)

    Article  Google Scholar 

  • B.P. Pandey, M. Wardle, Hall instability of solar flux tubes in the presence of shear flows. Mon. Not. R. Astron. Soc. 426, 1436–1443 (2012)

    Article  Google Scholar 

  • B.P. Pandey, M. Wardle, Magnetic-diffusion-driven shear instability of solar flux tubes. Mon. Not. R. Astron. Soc. 431, 570–581 (2013)

    Article  Google Scholar 

  • G.W. Pneuman, S.K. Solanki, J.O. Stenflo, Structure and merging of solar magnetic flux tubes. Astron. Astrophys. 154, 231–242 (1986)

    MATH  Google Scholar 

  • B. Popescu Braileanu, V.S. Lukin, E. Khomenko, A. de Vicente, Two-fluid simulations of waves in the solar chromosphere I: numerical code validation. Astron. Astrophys. (2019, submitted)

    Google Scholar 

  • E. Priest, Magnetohydrodynamics of the Sun (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  • B. Roberts, Wave propagation in a magnetically structured atmosphere. I - Surface waves at a magnetic interface. Sol. Phys. 69, 27–38 (1981)

    Google Scholar 

  • V.A. Rozhansky, L.D. Tsedin, Transport Phenomena in Partially Ionized Plasma (Taylor & Francis, London, 2001)

    Google Scholar 

  • R.J. Rutten, Radiative Transfer in Stellar Atmospheres. Lecture Notes (Utrecht University, Utrecht, 2003)

    Google Scholar 

  • S. Shelyag, E. Khomenko, A. de Vicente, D. Przybylski, Heating of the partially ionized solar chromosphere by waves in magnetic structures. Astrophys. J. Lett. 819, L11 (2016)

    Article  Google Scholar 

  • B.M. Smirnov, Physics of atoms and ions, in Graduate Texts in Contemporary Physics (Springer, New York, 2003)

    Google Scholar 

  • H. Socas-Navarro, Semiempirical models of solar magnetic structures. Astrophys. J. Suppl. Ser. 169, 439–457 (2007)

    Article  Google Scholar 

  • R. Soler, A.J. Díaz, J.L. Ballester, M. Goossens, Kelvin-Helmholtz instability in partially ionized compressible plasmas. Astrophys. J. 749, 163 (2012)

    Article  Google Scholar 

  • R. Soler, M. Carbonell, J.L. Ballester, Magnetoacoustic waves in a partially ionized two-fluid plasma. Astrophys. J. Suppl. Ser. 209, 16 (2013a)

    Article  Google Scholar 

  • R. Soler, M. Carbonell, J.L. Ballester, J. Terradas, Alfvén waves in a partially ionized two-fluid plasma. Astrophys. J. 767, 171 (2013b)

    Article  Google Scholar 

  • R. Soler, J.L. Ballester, T.V. Zaqarashvili, Overdamped Alfvén waves due to ion-neutral collisions in the solar chromosphere. Astron. Astrophys. 573, A79 (2015)

    Article  Google Scholar 

  • P. Song, T.I. Gombosi, A.J. Ridley, Three-fluid Ohm’s law. J. Geophys. Res. 106, 8149–8156 (2001)

    Article  Google Scholar 

  • V.M. Vasyliūnas, The physical basis of ionospheric electrodynamics. Ann. Geophys. 30, 357–369 (2012)

    Article  Google Scholar 

  • V.M. Vasyliūnas, P. Song, Meaning of ionospheric Joule heating. J. Geophys. Res. 110, A20302 (2005)

    Article  Google Scholar 

  • J.E. Vernazza, E.H. Avrett, R. Loeser, Structure of the solar chromosphere. III - models of the EUV brightness components of the quiet sun. Astrophys. J. 45, 635–725 (1981)

    Google Scholar 

  • G.S. Voronov, A practical fit formula for ionization rate coefficients of atoms and ions by electron impact: Z = 1-28. At. Data Nucl. Data Tables 65, 1 (1997)

    Article  Google Scholar 

  • J. Vranjes, P.S. Krstic, Collisions, magnetization, and transport coefficients in the lower solar atmosphere. Astron. Astrophys. 554, A22 (2013)

    Article  Google Scholar 

  • J. Vranjes, B.P. Pandey, S. Poedts, Collisional instability of the drift wave in multi-component plasmas. Planet. Space Sci. 54, 695–700 (2006)

    Article  Google Scholar 

  • M. Wardle, C. Ng, The conductivity of dense molecular gas. Mon. Not. R. Astron. Soc. 303, 239–246 (1999)

    Article  Google Scholar 

  • T.V. Zaqarashvili, M.L. Khodachenko, H.O. Rucker, Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach. Astron. Astrophys. 529, A82 (2011a)

    Article  Google Scholar 

  • T.V. Zaqarashvili, M.L. Khodachenko, H.O. Rucker, Damping of Alfvén waves in solar partially ionized plasmas: effect of neutral helium in multi-fluid approach. Astron. Astrophys. 534, A93 (2011b)

    Article  Google Scholar 

  • T.V. Zaqarashvili, M. Carbonell, J.L. Ballester, M.L. Khodachenko, Cut-off wavenumber of Alfvén waves in partially ionized plasmas of the solar atmosphere. Astron. Astrophys. 544, A143 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Khomenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khomenko, E. (2020). Multi-Fluid Extensions of MHD and Their Implications on Waves and Instabilities. In: MacTaggart, D., Hillier, A. (eds) Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory. CISM International Centre for Mechanical Sciences, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-030-16343-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16343-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16342-6

  • Online ISBN: 978-3-030-16343-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics