Multi-Fluid Extensions of MHD and Their Implications on Waves and Instabilities

  • Elena KhomenkoEmail author
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 591)


This chapter provides a brief overview on how the inclusion of extra physics in standard magnetohydrodynamics affects waves and instabilities. The inclusion of such extra physics is important for many plasma systems, such as planetary ionospheres and magnetospheres, the interstellar medium and molecular clouds and also the atmospheres of cool stars such as the Sun.


  1. I. Ballai, R. Oliver, M. Alexandrou, Dissipative instability in partially ionised prominence plasmas. Astron. Astrophys. 577, A82 (2015)CrossRefGoogle Scholar
  2. J.L. Ballester, I. Alexeev, M. Collados, T. Downes, R.F. Pfaff, H. Gilbert, M. Khodachenko, E. Khomenko, I.F. Shaikhislamov, R. Soler, E. Vázquez-Semadeni, T. Zaqarashvili, Partially ionized plasmas in astrophysics. Space Sci. Rev. 214, 58 (2018)CrossRefGoogle Scholar
  3. J.A. Bittencourt, Fundamentals of Plasma Physics (Pergamon Press, Oxford, 1986)zbMATHGoogle Scholar
  4. S.I. Braginskii, Transport processes in a plasma, in Reviews of Plasma Physics, ed. by M.A. Leontovich, vol. 1 (Consultants Bureau, New York, 1965), p. 205Google Scholar
  5. P.S. Cally, Dispersion relations, rays and ray splitting in magnetohelioseismology. Philos. Trans. Roy. Soc. Lond. Ser. A 364, 333–349 (2006)CrossRefGoogle Scholar
  6. P.S. Cally, M. Goossens, Three-dimensional MHD wave propagation and conversion to Alfvén waves near the solar surface. I. Direct numerical solution. Sol. Phys. 251, 251–265 (2008)Google Scholar
  7. P.S. Cally, E. Khomenko, Fast-to-Alfvén mode conversion mediated by the Hall current. I. Cold plasma model. Astrophys. J. 814, 106 (2015)CrossRefGoogle Scholar
  8. M. Carlsson, A computer program for solving multi-level non-LTE radiative transfer problems in moving or static atmospheres. Uppsala Astronomical Observatory Reports, no 33 (1986)Google Scholar
  9. G.E. Ciolek, W.G. Roberge, Time-dependent, multifluid, magnetohydrodynamic shock waves with grain dynamics. I. Formulation and numerical tests. Astrophys. J. 567, 947–961 (2002)CrossRefGoogle Scholar
  10. B. De Pontieu, G. Haerendel, Weakly damped Alfvén waves as drivers for spicules. Astrophys. J. 338, 729 (1998)Google Scholar
  11. B. De Pontieu, P.C.H. Martens, H.S. Hudson, Chromospheric damping of Alfvén waves. Astrophys. J. 558, 859–871 (2001)CrossRefGoogle Scholar
  12. A.J. Díaz, R. Soler, J.L. Ballester, Rayleigh-Taylor instability in partially ionized compressible plasmas. Astrophys. J. 754, 41 (2012)CrossRefGoogle Scholar
  13. A.J. Díaz, E. Khomenko, M. Collados, Rayleigh-Taylor instability in partially ionized compressible plasmas: one fluid approach. Astron. Astrophys. 564, A97 (2014)CrossRefGoogle Scholar
  14. B.T. Draine, Multicomponent, reacting MHD flows. Mon. Not. R. Astron. Soc. 220, 133–148 (1986)CrossRefGoogle Scholar
  15. S.A.E.G. Falle, A numerical scheme for multifluid magnetohydrodynamics. Mon. Not. R. Astron. Soc. 344, 1210–1218 (2003)CrossRefGoogle Scholar
  16. J.M. Fontenla, Chromospheric plasma and the Farley-Buneman instability in solar magnetic regions. Astron. Astrophys. 442, 1099–1103 (2005)CrossRefGoogle Scholar
  17. J.M. Fontenla, W.K. Peterson, J. Harder, Chromospheric heating by the Farley-Buneman instability. Astron. Astrophys. 480, 839–846 (2008)CrossRefGoogle Scholar
  18. G. Gogoberidze, Y. Voitenko, S. Poedts, M. Goossens, Farley-Buneman instability in the solar chromosphere. Astrophys. J. Lett. 706, L12–L16 (2009)CrossRefGoogle Scholar
  19. G. Gogoberidze, Y. Voitenko, S. Poedts, J. De Keyser, Electrostatic plasma instabilities driven by neutral gas flows in the solar chromosphere. Mon. Not. R. Astron. Soc. 438, 3568–3576 (2014)CrossRefGoogle Scholar
  20. P.A. Gonzalez-Morales, E. Khomenko, P. Cally, Fast-to-Alfvén mode conversion mediated by Hall current. II Application to the solar atmosphere. Astrophys. J. 870, 94 (2019)CrossRefGoogle Scholar
  21. G. Haerendel, Weakly damped Alfvén waves as drivers of solar chromospheric spicules. Nature 360, 241–243 (1992)CrossRefGoogle Scholar
  22. J.D. Huba, NRL Plasma Formulary (Naval Research Laboratory, Washington, DC, 1998)Google Scholar
  23. P. Judge, An explanation of the solar transition region. Astrophys. J. Lett. 683, L87–L90 (2008)CrossRefGoogle Scholar
  24. M.L. Khodachenko, T.D. Arber, H.O. Rucker, A. Hanslmeier, Collisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere. Astron. Astrophys. 422, 1073 (2004)CrossRefGoogle Scholar
  25. M.L. Khodachenko, H.O. Rucker, R. Oliver, T.D. Arber, A. Hanslmeier, On the mechanisms of MHD wave damping in the partially ionized solar plasmas. Adv. Space Res. 37, 447 (2006)CrossRefGoogle Scholar
  26. E. Khomenko, M. Collados, Numerical modeling of magnetohydrodynamic wave propagation and refraction in sunspots. Astrophys. J. 653, 739–755 (2006)CrossRefGoogle Scholar
  27. E. Khomenko, M. Collados, Heating of the magnetized solar chromosphere by partial ionization effects. Astrophys. J. 747, 87 (2012)CrossRefGoogle Scholar
  28. E. Khomenko, M. Collados, Oscillations and waves in sunspots. Living Rev. Sol. Phys. 12, 6 (2015)CrossRefGoogle Scholar
  29. E. Khomenko, M. Collados, T. Felipe, Nonlinear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes. Solar Phys. 251, 589–611 (2008)CrossRefGoogle Scholar
  30. E. Khomenko, M. Collados, A. Díaz, N. Vitas, Fluid description of multi-component solar partially ionized plasma. Phys. Plasmas 21(9), 092901 (2014)CrossRefGoogle Scholar
  31. E. Khomenko, N. Vitas, M. Collados, A. de Vicente, Numerical simulations of quiet Sun magnetic fields seeded by the Biermann battery. Astron. Astrophys. 604, A66 (2017)CrossRefGoogle Scholar
  32. N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill Kogakusha, Tokyo, 1973)CrossRefGoogle Scholar
  33. V. Krasnoselskikh, G. Vekstein, H.S. Hudson, S.D. Bale, W.P. Abbett, Generation of electric currents in the chromosphere via neutral-ion drag. Astrophys. J. 724, 1542–1550 (2010)CrossRefGoogle Scholar
  34. R. Kulsrud, W.P. Pearce, The effect of wave-particle interactions on the propagation of cosmic rays. Astrophys. J. 156, 445 (1969)CrossRefGoogle Scholar
  35. R.M. Kulsrud, E.G. Zweibel, On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71, 046901 (2008)CrossRefGoogle Scholar
  36. J.E. Leake, T.D. Arber, The emergence of magnetic flux through a partially ionised solar atmosphere. Astron. Astrophys. 450, 805–818 (2006)CrossRefGoogle Scholar
  37. J.E. Leake, C.R. DeVore, J.P. Thayer, A.G. Burns, G. Crowley, H.R. Gilbert, J.D. Huba, J. Krall, M.G. Linton, V.S. Lukin, W. Wang, Ionized plasma and neutral gas coupling in the sun’s chromosphere and earth’s ionosphere/thermosphere. Space Sci. Rev. 184, 107–172 (2014)CrossRefGoogle Scholar
  38. A.E. Lifschitz, Magnetohydrodynamics and Spectral Theory (Kluwer Academic Publisher, Dordrecht, 1989)CrossRefGoogle Scholar
  39. C.A. Madsen, Y.S. Dimant, M.M. Oppenheim, J.M. Fontenla, The multi-species Farley-Buneman instability in the solar chromosphere. Astrophys. J. 783, 128 (2014)CrossRefGoogle Scholar
  40. D. Mihalas, Stellar Atmospheres (Pergamon Press, Oxford, 1986)Google Scholar
  41. T.C. Mouschovias, G.E. Ciolek, S.A. Morton, Hydromagnetic waves in weakly-ionized media - I. Basic theory, and application to interstellar molecular clouds. Mon. Not. R. Astron. Soc. 415, 1751–1782 (2011)CrossRefGoogle Scholar
  42. B.P. Pandey, M. Wardle, Hall magnetohydrodynamics of partially ionized plasmas. Mon. Not. R. Astron. Soc. 385, 2269–2278 (2008)CrossRefGoogle Scholar
  43. B.P. Pandey, M. Wardle, Hall instability of solar flux tubes in the presence of shear flows. Mon. Not. R. Astron. Soc. 426, 1436–1443 (2012)CrossRefGoogle Scholar
  44. B.P. Pandey, M. Wardle, Magnetic-diffusion-driven shear instability of solar flux tubes. Mon. Not. R. Astron. Soc. 431, 570–581 (2013)CrossRefGoogle Scholar
  45. G.W. Pneuman, S.K. Solanki, J.O. Stenflo, Structure and merging of solar magnetic flux tubes. Astron. Astrophys. 154, 231–242 (1986)zbMATHGoogle Scholar
  46. B. Popescu Braileanu, V.S. Lukin, E. Khomenko, A. de Vicente, Two-fluid simulations of waves in the solar chromosphere I: numerical code validation. Astron. Astrophys. (2019, submitted)Google Scholar
  47. E. Priest, Magnetohydrodynamics of the Sun (Cambridge University Press, Cambridge, 2014)Google Scholar
  48. B. Roberts, Wave propagation in a magnetically structured atmosphere. I - Surface waves at a magnetic interface. Sol. Phys. 69, 27–38 (1981)Google Scholar
  49. V.A. Rozhansky, L.D. Tsedin, Transport Phenomena in Partially Ionized Plasma (Taylor & Francis, London, 2001)Google Scholar
  50. R.J. Rutten, Radiative Transfer in Stellar Atmospheres. Lecture Notes (Utrecht University, Utrecht, 2003)Google Scholar
  51. S. Shelyag, E. Khomenko, A. de Vicente, D. Przybylski, Heating of the partially ionized solar chromosphere by waves in magnetic structures. Astrophys. J. Lett. 819, L11 (2016)CrossRefGoogle Scholar
  52. B.M. Smirnov, Physics of atoms and ions, in Graduate Texts in Contemporary Physics (Springer, New York, 2003)Google Scholar
  53. H. Socas-Navarro, Semiempirical models of solar magnetic structures. Astrophys. J. Suppl. Ser. 169, 439–457 (2007)CrossRefGoogle Scholar
  54. R. Soler, A.J. Díaz, J.L. Ballester, M. Goossens, Kelvin-Helmholtz instability in partially ionized compressible plasmas. Astrophys. J. 749, 163 (2012)CrossRefGoogle Scholar
  55. R. Soler, M. Carbonell, J.L. Ballester, Magnetoacoustic waves in a partially ionized two-fluid plasma. Astrophys. J. Suppl. Ser. 209, 16 (2013a)CrossRefGoogle Scholar
  56. R. Soler, M. Carbonell, J.L. Ballester, J. Terradas, Alfvén waves in a partially ionized two-fluid plasma. Astrophys. J. 767, 171 (2013b)CrossRefGoogle Scholar
  57. R. Soler, J.L. Ballester, T.V. Zaqarashvili, Overdamped Alfvén waves due to ion-neutral collisions in the solar chromosphere. Astron. Astrophys. 573, A79 (2015)CrossRefGoogle Scholar
  58. P. Song, T.I. Gombosi, A.J. Ridley, Three-fluid Ohm’s law. J. Geophys. Res. 106, 8149–8156 (2001)CrossRefGoogle Scholar
  59. V.M. Vasyliūnas, The physical basis of ionospheric electrodynamics. Ann. Geophys. 30, 357–369 (2012)CrossRefGoogle Scholar
  60. V.M. Vasyliūnas, P. Song, Meaning of ionospheric Joule heating. J. Geophys. Res. 110, A20302 (2005)CrossRefGoogle Scholar
  61. J.E. Vernazza, E.H. Avrett, R. Loeser, Structure of the solar chromosphere. III - models of the EUV brightness components of the quiet sun. Astrophys. J. 45, 635–725 (1981)Google Scholar
  62. G.S. Voronov, A practical fit formula for ionization rate coefficients of atoms and ions by electron impact: Z = 1-28. At. Data Nucl. Data Tables 65, 1 (1997)CrossRefGoogle Scholar
  63. J. Vranjes, P.S. Krstic, Collisions, magnetization, and transport coefficients in the lower solar atmosphere. Astron. Astrophys. 554, A22 (2013)CrossRefGoogle Scholar
  64. J. Vranjes, B.P. Pandey, S. Poedts, Collisional instability of the drift wave in multi-component plasmas. Planet. Space Sci. 54, 695–700 (2006)CrossRefGoogle Scholar
  65. M. Wardle, C. Ng, The conductivity of dense molecular gas. Mon. Not. R. Astron. Soc. 303, 239–246 (1999)CrossRefGoogle Scholar
  66. T.V. Zaqarashvili, M.L. Khodachenko, H.O. Rucker, Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach. Astron. Astrophys. 529, A82 (2011a)CrossRefGoogle Scholar
  67. T.V. Zaqarashvili, M.L. Khodachenko, H.O. Rucker, Damping of Alfvén waves in solar partially ionized plasmas: effect of neutral helium in multi-fluid approach. Astron. Astrophys. 534, A93 (2011b)CrossRefGoogle Scholar
  68. T.V. Zaqarashvili, M. Carbonell, J.L. Ballester, M.L. Khodachenko, Cut-off wavenumber of Alfvén waves in partially ionized plasmas of the solar atmosphere. Astron. Astrophys. 544, A143 (2012)CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2020

Authors and Affiliations

  1. 1.Instituto de Astrofísica de CanariasLa Laguna, TenerifeSpain

Personalised recommendations