Magnetohydrodynamic Relaxation Theory

  • Anthony R. YeatesEmail author
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 591)


This chapter is concerned with the magnetic relaxation problem, in which an electrically conducting fluid is initialised in some non-trivial state, and is subsequently allowed to relax to some minimum-energy state, subject to the magnetohydrodynamic (MHD) equations. No driving or forcing is applied during this relaxation process and some form of dissipation allows energy to decrease until the system reaches a relaxed state. Our problem is simple: can we understand or predict this relaxed state?


  1. K. Bajer, H.K. Moffatt, Magnetic relaxation, current sheets, and structure formation in an extremely tenuous fluid medium. Astrophys. J. 779, 169 (2013)CrossRefGoogle Scholar
  2. M.R. Bareford, A.W. Hood, P.K. Browning, Coronal heating by the partial relaxation of twisted loops. Astron. Astrophys. 550, A40 (2013)CrossRefGoogle Scholar
  3. M.A. Berger, Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30, 79–104 (1984)CrossRefGoogle Scholar
  4. M.A. Berger, An energy formula for nonlinear force-free magnetic fields. Astron. Astrophys. 201, 355–361 (1988)MathSciNetzbMATHGoogle Scholar
  5. A. Bhattacharjee, R.L. Dewar, Energy principle with global invariants. Phys. Fluids 25, 887–897 (1982)MathSciNetCrossRefGoogle Scholar
  6. D. Biskamp, Nonlinear Magnetohydrodynamics (Cambridge University, Cambridge, 1997)Google Scholar
  7. P.K. Browning, Helicity injection and relaxation in a solar-coronal magnetic loop with a free surface. J. Plasma Phys. 40, 263–280 (1988)CrossRefGoogle Scholar
  8. S. Candelaresi, D.I. Pontin, G. Hornig, Magnetic field relaxation and current sheets in an ideal plasma. Astrophys. J. 808, 134 (2015)CrossRefGoogle Scholar
  9. J. Cantarella, D. DeTurck, H. Gluck, M. Teytel, The spectrum of the curl operator on spherically symmetric domains. Phys. Plasmas 7, 2766–2775 (2000)MathSciNetCrossRefGoogle Scholar
  10. A.R. Choudhuri, The Physics of Fluids and Plasmas: An Introduction for Astrophysicists (Cambridge University, Cambridge, 1998)CrossRefGoogle Scholar
  11. C.G. Gimblett, R.J. Hastie, P. Helander, Model for current-driven edge-localized modes. Phys. Rev. Lett. 96(3), 035006 (2006)Google Scholar
  12. J. Heyvaerts, E.R. Priest, Coronal heating by reconnection in DC current systems - a theory based on Taylor’s hypothesis. Astron. Astrophys. 137, 63–78 (1984)Google Scholar
  13. S.P. Hirshman, J.C. Whitson, Steepest-descent moment method for three-dimensional magnetohydrodynamic equilibria. Phys. Fluids 26, 3553–3568 (1983)CrossRefGoogle Scholar
  14. S.R. Hudson, R.L. Dewar, G. Dennis, M.J. Hole, M. McGann, G. von Nessi, S. Lazerson, Computation of multi-region relaxed magnetohydrodynamic equilibria. Phys. Plasmas 19(11), 112502 (2012)CrossRefGoogle Scholar
  15. A.S. Hussain, P.K. Browning, A.W. Hood, A relaxation model of coronal heating in multiple interacting flux ropes. Astron. Astrophys. 600, A5 (2017)CrossRefGoogle Scholar
  16. P. Laurence, M. Avellaneda, On Woltjer’s variational principle for force-free fields. J. Math. Phys. 32, 1240–1253 (1991)MathSciNetCrossRefGoogle Scholar
  17. H.K. Moffatt, The energy spectrum of knots and links. Nature 347, 367–369 (1990)CrossRefGoogle Scholar
  18. H.K. Moffatt, Relaxation under topological constraints, in Topological Aspects of the Dynamics of Fluids and Plasmas, ed. by H.K. Moffatt, G.M. Zaslavsky, P. Comte, M. Tabor (Springer Netherlands, Dordrecht, 1992), pp. 3–28CrossRefGoogle Scholar
  19. H.K. Moffatt, Magnetic relaxation and the Taylor conjecture. J. Plasma Phys. 81(6), 905810608 (2015)Google Scholar
  20. R. Paccagnella, Relaxation models for single helical reversed field pinch plasmas. Phys. Plasmas 23(9), 092512 (2016)CrossRefGoogle Scholar
  21. D.I. Pontin, G. Hornig, The structure of current layers and degree of field-line braiding in coronal loops. Astrophys. J. 805, 47 (2015)CrossRefGoogle Scholar
  22. D.I. Pontin, S. Candelaresi, A.J.B. Russell, G. Hornig, Braided magnetic fields: equilibria, relaxation and heating. Plasma Phys. Controlled Fusion 58(5), 054008 (2016)CrossRefGoogle Scholar
  23. A. Reiman, Minimum energy state of a toroidal discharge. Phys. Fluids 23, 230–231 (1980)MathSciNetCrossRefGoogle Scholar
  24. R.L. Ricca, F. Maggioni, On the groundstate energy spectrum of magnetic knots and links. J. Phys. A Math. Gen. 47(20), 205501 (2014)MathSciNetCrossRefGoogle Scholar
  25. A.J.B. Russell, A.R. Yeates, G. Hornig, A.L. Wilmot-Smith, Evolution of field line helicity during magnetic reconnection. Phys. Plasmas 22(3), 032106 (2015)CrossRefGoogle Scholar
  26. C.B. Smiet, S. Candelaresi, D. Bouwmeester, Ideal relaxation of the Hopf fibration. Phys. Plasmas 24(7), 072110 (2017)CrossRefGoogle Scholar
  27. J.B. Taylor, Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139–1141 (1974)CrossRefGoogle Scholar
  28. J.B. Taylor, Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741–763 (1986)CrossRefGoogle Scholar
  29. G. Valori, B. Kliem, T. Török, V.S. Titov, Testing magnetofrictional extrapolation with the Titov-Démoulin model of solar active regions. Astron. Astrophys. 519, A44 (2010)CrossRefGoogle Scholar
  30. A.A. van Ballegooijen, E.R. Priest, D.H. Mackay, Mean field model for the formation of filament channels on the sun. Astrophys. J. 539, 983–994 (2000)CrossRefGoogle Scholar
  31. G.M. Webb, Q. Hu, B. Dasgupta, G.P. Zank, Homotopy formulas for the magnetic vector potential and magnetic helicity: the Parker spiral interplanetary magnetic field and magnetic flux ropes. J. Geophys. Res. Space Phys. 115, A10112 (2010)CrossRefGoogle Scholar
  32. L. Woltjer, A theorem on force-free magnetic fields. Proc. Natl. Acad. Sci. 44, 489–491 (1958)MathSciNetCrossRefGoogle Scholar
  33. A.R. Yeates, G. Hornig, The global distribution of magnetic helicity in the solar corona. Astron. Astrophys. 594, A98 (2016)CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2020

Authors and Affiliations

  1. 1.Department of Mathematical SciencesDurham UniversityDurhamUK

Personalised recommendations