Skip to main content

MPLS Traffic Engineering Solution of Multipath Fast ReRoute with Local and Bandwidth Protection

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 938))

Abstract

An MPLS Traffic Engineering solution of multipath Fast ReRoute with local and bandwidth protection is proposed. The novelty of the solution lies in the fact that the optimization problem of load balancing during fast rerouting is presented in the linear form provided the communication links bandwidth protection. This solution practically reduces the computational complexity of determining the routing variables responsible for the formation of the primary and backup paths and provides a balanced load of communication links that meet the requirements of the Traffic Engineering concept. The model provides implementation of local (link, node) and bandwidth protection schemes for fast rerouting with load balancing in telecommunication networks. The analysis of the proposed model has confirmed its adequacy and efficiency in terms of obtaining optimal solutions to ensure balanced load of network communication links and the implementation of necessary schemes for network elements (link, node, and bandwidth) protection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. White, R., Banks, E.: Computer Networking Problems and Solutions: An Innovative Approach to Building Resilient, Modern Networks. Addison-Wesley Professional, Boston (2017)

    Google Scholar 

  2. White, R., Tantsura, J.E.: Navigating Network Complexity: Next-generation Routing with SDN, Service Virtualization, and Service Chaining. Addison-Wesley Professional, Boston (2015)

    Google Scholar 

  3. Monge, A.S., Szarkowicz, K.G.: MPLS in the SDN Era: Interoperable Scenarios to Make Networks Scale to New Services. O’Reilly Media, Inc., Sebastopol (2015)

    Google Scholar 

  4. Stallings, W.: Foundations of Modern Networking: SDN, NFV, QoE IoT, and Cloud. Addison-Wesley Professional, Boston (2015)

    Google Scholar 

  5. Rak, J.: Resilient Routing in Communication Networks. Springer, Switzerland (2015). https://doi.org/10.1007/978-3-319-22333-9

    Book  Google Scholar 

  6. Alashaikh, A., Tipper, D., Gomes, T.: Exploring the logical layer to support differentiated resilience classes in multilayer networks. Ann. Telecommun. 73, 1–17 (2017). https://doi.org/10.1007/s12243-017-0616-1

    Article  Google Scholar 

  7. Cisco Networking Academy (Ed.) Routing Protocols Companion Guide. Pearson Education (2014)

    Google Scholar 

  8. Lemeshko, O., Yeremenko, O., Tariki, N.: Solution for the default gateway protection within fault-tolerant routing in an IP network. Int. J. Electr. Comput. Eng. Syst. 8(1), 19–26 (2017)

    Article  Google Scholar 

  9. Pavlik, J., Komarek, A., Sobeslav, V., Horalek, J.: Gateway redundancy protocols. In: 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI) Proceedings, pp. 459–464. IEEE (2014). https://doi.org/10.1109/CINTI.2014.7028719

  10. Haider, A., Harris, R.J.: Recovery techniques in next generation networks. IEEE Commun. Surv. Tutor. 9(1–4), 2–17 (2007). https://doi.org/10.1109/COMST.2007.4317617

    Article  Google Scholar 

  11. Lemeshko, O., Arous, K., Tariki, N.: Effective solution for scalability and productivity improvement in fault-tolerant routing. In: 2015 Second International Scientific-Practical Conference Problems of Infocommunications Science and Technology (PIC S&T) Proceedings, pp. 76–78. IEEE (2015). https://doi.org/10.1109/INFOCOMMST.2015.7357274

  12. Lemeshko, A.V., Yeremenko, O.S., Tariki, N.: Improvement of flow-oriented fast reroute model based on scalable protection solutions for telecommunication network elements. Telecommun. Radio Eng. 76(6), 477–490 (2017). https://doi.org/10.1615/TelecomRadEng.v76.i6.30

    Article  Google Scholar 

  13. Lemeshko, O., Yeremenko, O.: Enhanced method of fast re-routing with load balancing in software-defined networks. Journal of Electrical Engineering 68(6), 444–454 (2017). https://doi.org/10.1515/jee-2017-0079

    Article  Google Scholar 

  14. Yeremenko, O.S., Lemeshko, O.V., Tariki, N.: Fast ReRoute scalable solution with protection schemes of network elements. In: 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON) Proceedings, pp. 783–788. IEEE (2017). https://doi.org/10.1109/UKRCON.2017.8100353

  15. Yeremenko, O., Lemeshko, O., Tariki, N., Hailan, A.M.: Research of optimization model of fault-tolerant routing with bilinear path protection criterion. In: 2017 2nd International Conference on Advanced Information and Communication Technologies (AICT) Proceedings, pp. 219–222. IEEE (2017). https://doi.org/10.1109/AIACT.2017.8020105

  16. Lin, S.C., Wang, P., Luo, M.: Control traffic balancing in software defined networks. Comput. Netw. 106, 260–271 (2016). https://doi.org/10.1016/j.comnet.2015.08.004

    Article  Google Scholar 

  17. Pan, P., Swallow, G., Atlas, A.: Fast reroute extensions to RSVP-TE for LSP tunnels, No. RFC 4090 (2005)

    Google Scholar 

  18. Seok, Y., Lee, Y., Choi, Y., Kim, C.: Dynamic constrained traffic engineering for multicast routing. In: International Conference on Information Networking, pp. 278–288. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45803-4_26

  19. Wang, Y., Wang, Z.: Explicit routing algorithms for internet traffic engineering. In: Proceedings Eight International Conference on Computer Communications and Networks (Cat. No.99EX370) Proceedings, pp. 582–588. IEEE (1999). https://doi.org/10.1109/ICCCN.1999.805577

  20. Lemeshko, A.V., Evseeva, O.Y., Garkusha, S.V.: Research on tensor model of multipath routing in telecommunication network with support of service quality by greate number of indices. Telecommun. Radio Eng. 73(15), 1339–1360 (2014). https://doi.org/10.1615/TelecomRadEng.v73.i15.30

    Article  Google Scholar 

  21. King, D., Farrel, A.: The application of the path computation element architecture to the determination of a sequence of domains in MPLS and GMPLS, No. RFC 6805 (2012)

    Google Scholar 

  22. Paolucci, F., Cugini, F., Giorgetti, A., Sambo, N., Castoldi, P.: A survey on the path computation element (PCE) architecture. IEEE Commun. Surv. Tutor. 15(4), 1819–1841 (2013). https://doi.org/10.1109/SURV.2013.011413.00087

    Article  Google Scholar 

  23. Prabhavat, S., Nishiyama, H., Ansari, N., Kato, N.: On load distribution over multipath networks. IEEE Commun. Surv. Tutor. 14(3), 662–680 (2012). https://doi.org/10.1109/SURV.2011.082511.00013

    Article  Google Scholar 

  24. Wang, N., Ho, K., Pavlou, G., Howarth, M.: An overview of routing optimization for internet traffic engineering. IEEE Commun. Surv. Tutor. 10(1), 36–56 (2008). https://doi.org/10.1109/COMST.2008.4483669

    Article  Google Scholar 

  25. Koubàa, M., Amdouni, N., Aguili, T.: Efficient traffic engineering strategies for optimizing network throughput in WDM all-optical networks. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 7(6), 39–49 (2015). https://doi.org/10.5815/ijcnis.2015.06.05

    Article  Google Scholar 

  26. Mallapur, S.V., Patil, S.R., Agarkhed, J.V.: A stable backbone-based on demand multipath routing protocol for wireless mobile Ad Hoc networks. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 8(3), 41–51 (2016). https://doi.org/10.5815/ijcnis.2016.03.06

    Article  Google Scholar 

  27. Moza, M., Kumar, S.: Analyzing multiple routing configuration. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 8(5), 48–54 (2016). https://doi.org/10.5815/ijcnis.2016.05.07

    Article  Google Scholar 

  28. Krishna, S.R.M., Seeta Ramanath, M.N., Kamakshi Prasad, V.: Optimal reliable routing path selection in MANET through novel approach in GA. Int. J. Intell. Syst. Appl. (IJISA), 9(2), 35–41 (2017). https://doi.org/10.5815/ijisa.2017.02.05

  29. Smelyakov, K., Dmitry, P., Vitalii, M., Anastasiya, C.: Investigation of network infrastructure control parameters for effective intellectual analysis. In: 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET) Proceedings, pp. 983–986. IEEE (2018). https://doi.org/10.1109/tcset.2018.8336359

  30. Ruban, I.V., Churyumov, G.I., Tokarev, V.V., Tkachov, V.M.: Provision of survivability of reconfigurable mobile system on exposure to high-power electromagnetic radiation. In: Selected Papers of the XVII International Scientific and Practical Conference on Information Technologies and Security (ITS 2017), CEUR Workshop Processing, pp. 105–111 (2017)

    Google Scholar 

  31. Ageyev, D., Kirichenko, L., Radivilova, T., Tawalbeh, M., Baranovskyi, O.: Method of self-similar load balancing in network intrusion detection system. In: 2018 28th International Conference Radioelektronika (RADIOELEKTRONIKA) Proceedings, pp. 1–4. IEEE (2018). https://doi.org/10.1109/radioelek.2018.8376406

  32. Yeremenko, O.S., Lemeshko, O.V., Nevzorova, O.S., Hailan A.M.: Method of hierarchical QoS routing based on the network resource reservation. In: 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON) Proceedings, pp. 971–976. IEEE (2017). https://doi.org/10.1109/UKRCON.2017.8100393

  33. Lakshman, N.L., Khan, R.U., Mishra, R.B.: MANETs: QoS and investigations on optimized link state routing protocol. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 10(10), 26–37 (2018). https://doi.org/10.5815/ijcnis.2018.10.04

    Article  Google Scholar 

  34. Najafi, G., Gudakahriz, S.J.: A stable routing protocol based on DSR protocol for mobile Ad Hoc networks. Int. J. Wirel. Microw. Technol. (IJWMT) 8(3), 14–22 (2018). https://doi.org/10.5815/ijwmt.2018.03.02

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandra Yeremenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lemeshko, O., Yeremenko, O., Yevdokymenko, M. (2020). MPLS Traffic Engineering Solution of Multipath Fast ReRoute with Local and Bandwidth Protection. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education II. ICCSEEA 2019. Advances in Intelligent Systems and Computing, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-030-16621-2_11

Download citation

Publish with us

Policies and ethics