Skip to main content

Effect of the Noise on Generalized Peres Gate Operation

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 938))

Abstract

The advantages of quantum computing may be lost due to the presence of various noises in real quantum devices. In this paper, generalized Peres gates are studied using a solid-state model of a linear chain of atoms with nuclear spin one half, which is implanted in a spin-free silicon matrix. The effect of frequency noise on the correctness of gates operation is investigated on the example of the one- and two-step algorithmic transitions. It is shown for the first time that an imbalance by the magnitude of the resonance control frequency leads to a significant decrease in the fidelity of correct gate operation on the digital states. While for the superposition input signals stabilization of the fidelity is observed to a level of 0.4–0.8 with an increase in the imbalance of the resonance frequency. A similar effect takes place at time deviation of the frequency around the resonant value. Minimum values of the frequency imbalance parameters, which ensure correctness of the generalized Peres gate operation, are proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gardas, B., Dziarmaga, J., Zurek, W.H., Zwolak, M.: Defects in quantum computers. Sci. Rep. 8(1), 4539 (2018). https://doi.org/10.1038/s41598-018-22763-2

    Article  Google Scholar 

  2. Paler, A., Fowler, A.G., Wille, R.: Reliable quantum circuits have defects. XRDS: Crossroads ACM Mag. Students 23(1), 34–38 (2016). https://doi.org/10.1145/2983541

  3. Knill, E.: Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005). https://doi.org/10.1038/nature03350

    Article  Google Scholar 

  4. Tosi, G., Mohiyaddin, F.A., Schmitt, V., Tenberg, S., Rahman, R., Klimeck, G., Morello, A.: Silicon quantum processor with robust long-distance qubit couplings. Nat. Commun. 8(1), 11 (2017). https://doi.org/10.1038/s41467-017-00378-x

    Article  Google Scholar 

  5. Kane, B.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)

    Article  Google Scholar 

  6. Muhonen, J.T., Laucht, A., Simmons, S., et al.: Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys.: Condens. Matter 27(15), 154205 (2015). https://doi.org/10.1088/0953-8984/27/15/154205

    Article  Google Scholar 

  7. Pla, J.J., Tan, K.Y., Dehollain, J.P., Lim, W.H., Morton, J.J.L., Zwanenburg, F.A., Jamieson, D.N., Dzurak, A.S., Morello, A.: High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496(7445), 334–338 (2013)

    Article  Google Scholar 

  8. Linke, N.M., Gutierrez, M., Landsman, K.A., Figgatt, C., Debnath, S., Brown, K.R., Monroe, C.: Fault-tolerant quantum error detection. Sci. Adv. 3(10), e1701074 (2017). https://doi.org/10.1126/sciadv.1701074

    Article  Google Scholar 

  9. Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible Toffoli circuits and their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012). https://doi.org/10.1109/TC.2011.144

    Article  MathSciNet  MATH  Google Scholar 

  10. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 25(11), 2317–2329 (2006). https://doi.org/10.1109/TCAD.2006.871622

    Article  Google Scholar 

  11. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32(6), 3266–3276 (1985). https://doi.org/10.1103/PhysRevA.32.3266

    Article  MathSciNet  Google Scholar 

  12. Szyprowski, M., Kerntopf, P.: Low quantum cost realization of generalized Peres and Toffoli gates with multiple-control signals. In: Proceedings of the 13th IEEE International Conference on Nanotechnology, pp. 802–807, Beijing (2013)

    Google Scholar 

  13. Moraga, C.: Multiple mixed control signals for reversible Peres gates. Electron. Lett. 50(14), 987–989 (2014)

    Article  Google Scholar 

  14. Rozhdov O.I., Yuriychuk I.M., Deibuk V.G.: Building a generalized peres gate with multiple control signals. In: Advances in Intelligent Systems and Computing, vol, 754, pp. 155–164, Springer, Cham (2019)

    Google Scholar 

  15. Berman, G.P., Doolen, G.D., Holm, D.D., Tsifrinovich, V.I.: Quantum computer on a class of one-dimensional Ising systems. Phys. Lett. A 193(5–6), 444–450 (1994)

    Article  Google Scholar 

  16. Deibuk, V.G., Yuriychuk, I.M., Yuriychuk, R.I.: Spin model of full adder on Peres gates. Int. J. Comput. 11(3), 282–292 (2012)

    Google Scholar 

  17. Lopez, G.V.: Diamond as a solid-state quantum computer with a linear chain of nuclear spins system. J. Mod. Phys. 5, 55–60 (2014)

    Article  Google Scholar 

  18. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Landauer, R.: Irreversibility and heat generation in the computational process. IBM J. Res. Dev. 5(1/2), 183–191 (1961)

    Article  MathSciNet  Google Scholar 

  20. Mendonça, P.E.M., Napolitano, R.D.J., Marchiolli, M.A., Foster, C.J., Liang, Y.-Ch.: Alternative fidelity measure between quantum states. Phys. Rev. A 78(5), 052330 (2008)

    Article  Google Scholar 

  21. Deibuk, V.G., Biloshytskyi, A.V.: Design of a ternary reversible/quantum adder using genetic algorithm. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 7(9), 38–45 (2015). https://doi.org/10.5815/ijitcs.2015.09.06

    Article  Google Scholar 

  22. Bilal, B., Ahmed, S., Kakkar, V.: Optimal realization of universality of peres gate using explicit interaction of cells in quantum dot cellular automata nanotechnology. Int. J. Intell. Syst. Appl. (IJISA) 9(6), 75–84 (2017). https://doi.org/10.5815/ijisa.2017.06.08

    Article  Google Scholar 

  23. Moghimi, S., Reshadinezhad, M.R.: A novel 4 × 4 universal reversible gate as a cost efficient full adder/subtractor in terms of reversible and quantum metrics. IJMECS 7(11), 28–34 (2015). https://doi.org/10.5815/ijmecs.2015.11.04

    Article  Google Scholar 

  24. Sihare, S.R., Nath, V.V.: Analysis of quantum algorithms with classical systems counterpart. Int. J. Inf. Eng. Electron. Bus. (IJIEEB) 9(2), 20–26 (2017). https://doi.org/10.5815/ijieeb.2017.02.03

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Deibuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuriychuk, I.M., Hu, Z., Deibuk, V.G. (2020). Effect of the Noise on Generalized Peres Gate Operation. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education II. ICCSEEA 2019. Advances in Intelligent Systems and Computing, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-030-16621-2_40

Download citation

Publish with us

Policies and ethics