Skip to main content

Digital Filters Optimization Modelling with Non-canonical Hypercomplex Number Systems

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 938))

Abstract

Recursive digital filter modelling is one of the tasks, which modelling can be improved by using hypercomplex numbers. Existing models are about data representation in canonical hypercomplex number system only. However, canonical number systems have some restrictions. Applying the non-canonical number systems gives more possibilities for filter simulation and its further optimization by its parametric sensitivity since they have more structure constants in Keli table.

The paper proposes a digital filter synthesis method, which is using non-canonical hypercomplex number systems. Use of non-canonical hypercomplex number system with greater number of non-zero structure constants in Keli table can significantly improve the sensitivity of the digital filter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rajankar, O.S., Kolekar, U.D.: Scale space reduction with interpolation to speed up visual saliency detection. Int. J. Image Graph. Signal Process. (IJIGSP) 7(8), 58–65 (2015). https://doi.org/10.5815/ijigsp.2015.08.07

    Article  Google Scholar 

  2. Khalil, M.I.: Applying quaternion Fourier transforms for enhancing color images. Int. J. Image Graph. Signal Process. (IJIGSP) 4(2), 9–15 (2012). https://doi.org/10.5815/ijigsp.2012.02.02

  3. Hata, R., Akhand, M.A.H., Islam, M.M., Murase, K.: Simplified real-, complex-, and quaternion-valued neuro-fuzzy learning algorithms. Int. J. Intell. Syst. Appl. (IJISA) 10(5), 1–13 (2018). https://doi.org/10.5815/ijisa.2018.05.01

    Article  Google Scholar 

  4. Kumar, S., Tripathi, B.K.: On the root-power mean aggregation based neuron in quaternionic domain. Int. J. Intell. Syst. Appl. (IJISA) 10(7), 11–26 (2018). https://doi.org/10.5815/ijisa.2018.07.02

    Article  Google Scholar 

  5. Kalinovsky, Y.A., Boyarinova, Y.E.: High dimensional isomorphic hypercomplex number systems and their using for calculation efficiency. Infodruk, Kyiv (2012)

    Google Scholar 

  6. Kalinovsky, J., Sinkov, M., Boyarinova, Y., Fedorenko, O., Sinkova, T.: Development of theoretical bases and toolkit for information processing in hypercomplex numerical systems. Pomiary. Automatyka. Komputery w gospodarce i ochronie srodowiska 1, 18–21 (2009)

    Google Scholar 

  7. Toyoshima, H.: Computationally efficient implementation of hypercomplex digital filters. IEICE Trans. Fundam. E85-A(8), 1870–1876 (2002)

    Google Scholar 

  8. Took, C.C., Mandic, D.P.: The quaternion LMS algorithm for adaptive filtering of hypercomplex processes. IEEE Trans. Signal Process. 57(4), 1316–1327 (2009)

    Article  MathSciNet  Google Scholar 

  9. Kalinovsky, Y.O., Lande, D.V., Boyarinova, Y.E., Khitsko, I.V.: Infinite hypercomplex number system factorization methods. http://arxiv.org/abs/1401.2844 (2014)

  10. Sinkov, M.V., Kalinovsky, Y.A., Boyarinova, Y.E.: Finite-Dimensional Hypercomplex Numerical Systems. Theory Basis. Supplement, Infodruk, Кyiv (2010)

    Google Scholar 

  11. Sinkov, M.V., Kalinovskiy, J.A., Boyarinova, Y.E., Sinkova, T.V., Fedorenko, O.V., Gorodko, N.O.: Fundamental principles of effective data presentation and processing on the basis of hypercomplex numerical systems. Data Rec. Storage Process. 12(2), 62–68 (2010)

    Google Scholar 

  12. Kalinosky, Y.A., Fedorenko, O.V.: Principles of constructing digital filters with hypercomplex coefficients. Data Rec. Storage Process. 11(1), 52–59 (2009)

    Google Scholar 

  13. Fedorenko, O.V.: Digital filters with low parametric sensitivity. Data Rec. Storage Process. 10(2), 87–94 (2008)

    Google Scholar 

  14. Kalinovsky, Y.O., Boyarinova, Y.E., Khitsko, I.V.: Reversible digital filters total parametric sensitivity optimization using non-canonical hypercomplex number systems (2015). http://arxiv.org/abs/1506.01701

  15. Kalinovsky, Y.O., Boyarinova, Y.E., Khitsko, I.V.: Hypercomplex operations system in Maple. Data Rec. Storage Process. 19(2), 11–23 (2017)

    Google Scholar 

  16. Kalinovsky, Y.O., Boyarinova, Y.E., Khitsko, I.V.: Software complex for hypercomplex computing. Electron. Model. 39(5), 81–95 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iana Khitsko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalinovsky, Y., Boyarinova, Y., Khitsko, I., Oleshchenko, L. (2020). Digital Filters Optimization Modelling with Non-canonical Hypercomplex Number Systems. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education II. ICCSEEA 2019. Advances in Intelligent Systems and Computing, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-030-16621-2_42

Download citation

Publish with us

Policies and ethics