Skip to main content

Elastic and Non-elastic Properties of Cadherin Ectodomain: Comparison with Mechanical System

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education II (ICCSEEA 2019)

Abstract

Cadherins are predominantly homotypically acting cell-cell adhesion molecules that play an essential role in animal differentiation and maintenance of tissue integrity. Their cell-cell adhesive function relies on the presence of Ca2+ but is also influenced by other ions, in particular Mg2+. Initial studies were devoted to analysis of the influence of various cations on cadherin-mediated cell-cell adhesion, and the subsequent work is focused predominantly on the role of Ca2+, disregarding other physiologically relevant ions that are also able to form water complexes and stabilize protein conformations, i.e. Mg2+. The amino acid sequence analysis revealed earlier the presence of several putative acidic Ca2+ binding motifs that were later confirmed. Using molecular dynamics simulations we demonstrated that the cadherin ectodomain acts as a spring but also dampens pulling forces. Both the simple model system (Glu-ion-Glu) and the complex cadherin macromolecule equally demonstrate two types of behavior: the systems with potassium and sodium ions possess less mechanical stability for external force action than the systems with calcium and magnesium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takeichi, M., Hatta, K., Nose, A., Nagafuchi, A.: Identification of a gene family of cadherin cell adhesion molecules. Cell Differ. Dev. 25, 91–94 (1988)

    Article  Google Scholar 

  2. Chen, J., Ruan, H., Ng, S.M., Gao, C., Soo, H.M., Wu, W., Zhang, Z., Wen, Z., Lane, D.P., Peng, J.: Loss of function of def selectively up-regulates Delta 113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev. 19, 2900–2911 (2005)

    Article  Google Scholar 

  3. Patel, N.A., Curiel, S., Zhang, Q., Sridharan, T.K., et al.: Torrelles submillimeter array observations of 321 GHz water maser emission in cepheus A. Astrophys. J. 658, L55–L58 (2007)

    Article  Google Scholar 

  4. Niessen, C.M., Gumbiner, B.M.: Cadherin-mediated cell sorting not determined by binding or adhesion specificity. J. Cell Biol. 156, 389–399 (2002)

    Article  Google Scholar 

  5. Foty, R.A., Steinberg, M.S.: The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–263 (2005)

    Article  Google Scholar 

  6. Shimoyama, Y., Tsujimoto, G., Kitajima, M., Natori, M.: Identification of three human type-II classic cadherins and frequent heterophilic interactions between different subclasses of type-II classic cadherins. Biochem. J. 349, 159–167 (2000)

    Article  Google Scholar 

  7. Williams, E.J., Williams, G., Howell, F.V., Skaper, S.D., Walsh, F.S., Doherty, P.: Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J. Biol. Chem. 276, 43879–43886 (2001)

    Article  Google Scholar 

  8. Nagar, B., Overduin, M., Ikura, M., Rini, J.M.: Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380, 360–364 (1996)

    Article  Google Scholar 

  9. Haussinger, D., Ahrens, T., Aberle, T., Engel, J., Stetefeld, J., Grzesiek, S.: Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. EMBO J. 23, 1699–1708 (2004)

    Article  Google Scholar 

  10. Oroz, J., Valbuena, A., Vera, A.M., Mendieta, J., Gomez-Puertas, P., Carrion-Vazquez, M.: Nanomechanics of the Cadherin ectodomain. J. Biol. Chem. 286, 9405–9418 (2011)

    Article  Google Scholar 

  11. Pokutta, S., Herrenknecht, K., Kemler, R., Engel, J.: Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur. J. Biochem. 223(3), 1019–1026 (1994)

    Article  Google Scholar 

  12. Zhang, Y., Sivasankar, S., Nelson, J., Chu, S.: Resolving cadherin interactions and binding. PNAS 106, 109–114 (2009)

    Article  Google Scholar 

  13. Sotomayor, M., Schulten, K.: The allosteric role of the Ca2+ switch in adhesion and elasticity of C-cadherin. Biophys. J. 94, 4621–4633 (2008)

    Article  Google Scholar 

  14. Likhachev, I.V., Balabaev, N.K., Galzitskaya, O.V.: Available instruments for analyzing molecular dynamics trajectories. Open Biochem. J. 10, 1–11 (2016)

    Article  Google Scholar 

  15. Choi, Y.S., Sehgal, R., McCrea, P., Gumbiner, B.M.: A cadherin-like protein in eggs and cleaving embryos of Xenopus laevis is expressed in oocytes in response to progesterone. J. Cell Biol. 110, 1575–1582 (1990)

    Article  Google Scholar 

  16. Ginsberg, D., DeSimone, D., Geiger, B.: Expression of a novel cadherin (EP-cadherin) in unfertilized eggs and early Xenopus embryos. Development 111, 315–325 (1991)

    Google Scholar 

  17. Ueda, M.V., Takeichi, M.: Two mechanisms in cell adhesion revealed by effects of divalent cations. Cell Struct. Funct. 1, 377–388 (1976)

    Article  Google Scholar 

  18. Boggon, T.J., Murray, J., Chappuis-Flament, S., Wong, E., Gumbiner, B.M., Shapiro, L.: C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296, 1308–1313 (2002)

    Article  Google Scholar 

  19. Glyakina, A.V., Likhachev, I.V., Balabaev, N.K., Galzitskaya, O.V.: Comparative mechanical unfolding studies of spectrin domains R15, R16 and R17. J. Struct. Biol. 201, 162–170 (2018)

    Article  Google Scholar 

  20. Glyakina, A.V., Likhachev, I.V., Balabaev, N.K., Galzitskaya, O.V.: Mechanical stability analysis of the protein L immunoglobulin-binding domain by full alanine screening using molecular dynamics simulations. Biotech. J. 10, 386–394 (2015)

    Article  Google Scholar 

  21. Glyakina, A.V., Likhachev, I.V., Balabaev, N.K., Galzitskaya, O.V.: Right-and left-handed three-helix proteins. II. Similarity and differences in mechanical unfolding of proteins. Proteins 82, 90–102 (2014)

    Article  Google Scholar 

  22. Wang, J., Cieplak, P., Kollmann, P.A.: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comp. Chem. 21, 1049–1074 (2000)

    Article  Google Scholar 

  23. Aqvist, J.: Ion-water interaction potentials derived from free energy perturbation slmulations. J. Phys. Chem. 94, 8021–8024 (1990)

    Article  Google Scholar 

  24. Chawda, B.V., Patel, J.M.: Investigating performance of various natural computing algorithms. Int. J. Intell. Syst. Appl. (IJISA) 9(1), 46–59 (2017). https://doi.org/10.5815/ijisa.2017.01.05

    Article  Google Scholar 

  25. Lemak, A.S., Balabaev, N.K.: A comparison between collisional dynamics and Brownian dynamics. Mol. Simul. 15, 223–231 (1995)

    Article  Google Scholar 

  26. Lemak, A.S., Balabaev, N.K.: Molecular dynamics simulation of a polymer chain in solution by collisional dynamics method. J. Comp. Chem. 17, 1685–1695 (1996)

    Article  Google Scholar 

  27. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1989)

    MATH  Google Scholar 

  28. Piplani, S., Saini, V., Niraj, R.R., Pushp, A., Kumar, A.: Homology modelling and molecular docking studies of human placental cadherin protein for its role in teratogenic effects of anti-epileptic drugs. Comput. Biol. Chem. 60, 1–8 (2016)

    Article  Google Scholar 

  29. Alaofi, A., Farokhi, E., Prasasty, V.D., Anbanandam, A., Kuczera, K., Siahaan, T.J.: Probing the interaction between cHAVc3 peptide and the EC1 domain of E-cadherin using NMR and molecular dynamics simulations. J. Biomol. Struct. Dyn. 35, 92–104 (2017)

    Article  Google Scholar 

  30. Althagafy, E., Qureshi, M.R.J.: Novel cloud architecture to decrease problems related to big data. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 9(2), 53–60 (2017). https://doi.org/10.5815/ijcnis.2017.02.07

    Article  Google Scholar 

  31. Kaur, J., Kaur, K.: Internet of Things: a review on technologies, architecture, challenges, applications, future trends. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 9(4), 57–70 (2017). https://doi.org/10.5815/ijcnis.2017.04.07

    Article  Google Scholar 

  32. Akomolafe, O.P., Abodunrin, M.O.: A hybrid cryptographic model for data storage in mobile cloud computing. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 9(6), 53–60 (2017). https://doi.org/10.5815/ijcnis.2017.06.06

    Article  Google Scholar 

Download references

Funding

This research was funded by the RUSSIAN SCIENCE FOUNDATION.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Galzitskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Likhachev, I.V., Balabaev, N.K., Galzitskaya, O.V. (2020). Elastic and Non-elastic Properties of Cadherin Ectodomain: Comparison with Mechanical System. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education II. ICCSEEA 2019. Advances in Intelligent Systems and Computing, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-030-16621-2_52

Download citation

Publish with us

Policies and ethics