Advertisement

Weighted Linear Multiple Kernel Learning for Saliency Detection

  • Quan ZhouEmail author
  • Jinwen Wu
  • Yawen Fan
  • Suofei Zhang
  • Xiaofu Wu
  • Baoyu Zheng
  • Xin Jin
  • Huimin Lu
  • Longin Jan Latecki
Conference paper
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

This paper presents a novel saliency detection method based on weighted linear multiple kernel learning (WLMKL), which is able to adaptively combine different contrast measurements in a supervised manner. Three commonly used bottom-up visual saliency operations are first introduced, including corner-surround contrast (CSC), center-surround contrast (CESC), and global contrast (GC). Then these contrast measures are fed into our WLMKL framework to produce the final saliency map. We show that the assigned weights for each contrast feature maps are always normalized in our WLMKL formulation. In addition, the proposed approach benefits from the advantages of the contribution of each individual contrast operation, and thus produces more robust and accurate saliency maps. The extensive experimental results show the effectiveness of the proposed model, and demonstrate the combination is superior to individual subcomponent.

Keywords

Saliency detection Corner-surround contrast Center-surround contrast Global contrast Multiple kernel learning 

Notes

Acknowledgements

This work was partly supported by the National Science Foundation (Grant No. IIS-1302164), the National Natural Science Foundation of China (Grant No. 61881240048, 61571240, 61501247, 61501259, 61671253), China Postdoctoral Science Foundation (Grant No. 2015M581841), Open Fund Project of Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education (Nanjing University of Science and Technology) (Grant No. JYB201709, JYB201710), and Natural Science Foundation of Jiangsu Province, China (BK20160908), NUPTSF (Grant No. NY214139).

References

  1. 1.
    Achanta, R., Hemami, S., Estrada, F., & Süsstrunk, S. (2009). Frequency-tuned salient region detection. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1597–1604). Piscataway: IEEE.CrossRefGoogle Scholar
  2. 2.
    Alexe, B., Deselaers, T., & Ferrari, V. (2010) What is an object? In 2010 IEEE Computer Society conference on Computer Vision and Pattern Recognition (pp. 73–80). Piscataway: IEEE.CrossRefGoogle Scholar
  3. 3.
    Borji, A. (2012). Boosting bottom-up and top-down visual features for saliency estimation. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 438–445). Piscataway: IEEE.CrossRefGoogle Scholar
  4. 4.
    Bruce, N., & Tsotsos, J. (2006). Saliency based on information maximization. In Proceedings of the 18th International Conference on Neural Information Processing System (pp. 155–162). Cambridge, MA: MIT Press.Google Scholar
  5. 5.
    Cheng, M., Zhang, G., Mitra, N., Huang, X., & Hu, S. (2011). Global contrast based salient region detection. In Conference on Computer Vision and Pattern Recognition (pp. 409–416).Google Scholar
  6. 6.
    Goferman, S., Zelnik-Manor, L., & Tal, A. (2012). Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(10), 1915–1926.CrossRefGoogle Scholar
  7. 7.
    Gönen, M., & Alpaydın, E. (2011). Multiple kernel learning algorithms. Journal of Machine Learning Research, 12, 2211–2268.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gopalakrishnan, V., Hu, Y., & Rajan, D. (2009). Salient region detection by modeling distributions of color and orientation. IEEE Transactions on Multimedia, 11(5), 892–905.CrossRefGoogle Scholar
  9. 9.
    Hou, X., & Zhang, L. (2007). Saliency detection: A spectral residual approach. In 2007 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–8). Piscataway: IEEE.Google Scholar
  10. 10.
    Hou, X., & Zhang, L. (2008). Dynamic visual attention: Searching for coding length increments. In Advances in Neural Information Processing Systems (pp. 681–688).Google Scholar
  11. 11.
    Hu, Y., Xie, X., Ma, W. Y., Chia, L. T., & Rajan, D. (2005). Salient region detection using weighted feature maps based on the human visual attention model. In Advances in Multimedia Information Processing-PCM (pp. 993–1000).Google Scholar
  12. 12.
    Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259.CrossRefGoogle Scholar
  13. 13.
    Judd, T., Ehinger, K., Durand, F., & Torralba, A. (2009). Learning to predict where humans look. In 2009 IEEE 12th International Conference on Computer Vision (pp. 2106–2113). Piscataway: IEEE.CrossRefGoogle Scholar
  14. 14.
    Kruthiventi, S. S. S., Gudisa, V., Dholakiya, J. H., & Babu, R. V.: Saliency unified: A deep architecture for simultaneous eye fixation prediction and salient object segmentation. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5781–5790). Piscataway: IEEE.Google Scholar
  15. 15.
    Li, J., Li, X., Yang, B., & Sun, X. (2015). Segmentation-based image copy-move forgery detection scheme. IEEE Transactions on Information Forensics and Security, 10(3), 507–518.CrossRefGoogle Scholar
  16. 16.
    Lu, H., Zhang, X., Qi, J., Tong, N., Ruan, X., & Yang, M. H. (2017). Co-bootstrapping saliency. IEEE Transactions on Image Processing, 26(1), 414–425.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ma, Q., & Zhang, L. (2008). Image quality assessment with visual attention. In 2008 19th International Conference on Pattern Recognition (pp. 1–4). Piscataway: IEEE.Google Scholar
  18. 18.
    Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11, 19–60 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Marchesotti, L., Cifarelli, C., G., & Gabriela, C. (2009). A framework for visual saliency detection with applications to image thumbnailing. In 2009 IEEE 12th International Conference on Computer Vision (pp. 2232–2239).Google Scholar
  20. 20.
    Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.CrossRefGoogle Scholar
  21. 21.
    Pan, Z., Zhang, Y., & Kwong, S. (2015). Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Transactions on Broadcasting, 61(2), 166–176.CrossRefGoogle Scholar
  22. 22.
    Shen, X., & Wu, Y. (2012). A unified approach to salient object detection via low rank matrix recovery. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 853–860). Piscataway: IEEE.CrossRefGoogle Scholar
  23. 23.
    Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24(1), 1193–1216.CrossRefGoogle Scholar
  24. 24.
    Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.CrossRefGoogle Scholar
  25. 25.
    Vapnik, V. (1993). The Nature of Statistical Learning Theory. Berlin: Springer.zbMATHGoogle Scholar
  26. 26.
    Yu, J. G., Xia, G. S., Gao, C., & Samal, A. (2016). A computational model for object-based visual saliency: Spreading attention along gestalt cues. IEEE Transactions on Multimedia, 18(2), 273–286.CrossRefGoogle Scholar
  27. 27.
    Zhang, L., Tong, M. H., Marks, T. K., Shan, H., & Cottrell, G. W. (2008). SUN: A Bayesian framework for saliency using natural statistics. Journal of Vision, 8(7), 32.CrossRefGoogle Scholar
  28. 28.
    Zhou, Q. (2014). Object-based attention: saliency detection using contrast via background prototypes. Electronics Letters, 50(14), 997–999.CrossRefGoogle Scholar
  29. 29.
    Zhou, Q., Li, N., Yang, Y., Chen, P., & Liu, W. (2012). Corner-surround contrast for saliency detection. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012) (pp. 1423–1426). Piscataway: IEEE.Google Scholar
  30. 30.
    Zhou, Q., Chen, J., Ren, S., Zhou, Y., Chen, J., & Liu, W. (2013). On contrast combinations for visual saliency detection. In 2013 IEEE International Conference on Image Processing (pp. 2665–2669). Piscataway: IEEE.CrossRefGoogle Scholar
  31. 31.
    Zhou, Q., Cai, S., Zhu, S., & Zheng, B. (2014). Salient object detection using window mask transferring with multi-layer background contrast. In Asian Conference on Computer Vision (pp. 221–235). Cham: Springer.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Quan Zhou
    • 1
    • 2
    Email author
  • Jinwen Wu
    • 3
  • Yawen Fan
    • 1
  • Suofei Zhang
    • 4
  • Xiaofu Wu
    • 1
  • Baoyu Zheng
    • 1
  • Xin Jin
    • 5
    • 6
  • Huimin Lu
    • 7
  • Longin Jan Latecki
    • 8
  1. 1.National Engineering Research Center of Communications and NetworkingNanjing University of Posts and TelecommunicationsNanjingP. R. China
  2. 2.State Key Laboratory for Novel Software TechnologyNanjing UniversityNanjingP. R. China
  3. 3.College of Information EngineeringChina University of GeosciencesWuhanP. R. China
  4. 4.School of Internet of ThingsNanjing University of Posts and TelecommunicationsNanjingP. R. China
  5. 5.Department of Cyber SecurityBeijing Electronic Science and Technology InstituteBeijingChina
  6. 6.CETC Big Data Research Institute Co., Ltd., GuiyangGuizhouChina
  7. 7.Department of Mechanical and Control EngineeringKyushu Institute of TechnologyKitakyushuJapan
  8. 8.Department of Computer and Information SciencesTemple UniversityPhiladelphiaUSA

Personalised recommendations