Skip to main content

Context-Based Object Recognition: Indoor Versus Outdoor Environments

  • Conference paper
  • First Online:
Advances in Computer Vision (CVC 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 944))

Included in the following conference series:

Abstract

Object recognition is a challenging problem in high-level vision. Models that perform well for the outdoor domain, perform poorly in the indoor domain and the reverse is also true. This is due to the dramatic discrepancies of the global properties of each environment, for instance, backgrounds and lighting conditions. Here, we show that inferring the environment before or during the recognition process can dramatically enhance the recognition performance. We used a combination of deep and shallow models for object and scene recognition, respectively. Also, we used three novel topologies that can provide a trade-off between classification accuracy and decision sensitivity. We achieved a classification accuracy of 97.91%, outperforming the performance of a single GoogLeNet by 13%. In another experiment, we achieved an accuracy of 95% to categorise indoor and outdoor scenes by inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Z., Wang, Y., Yu, J., Guo, Y., Cao, W.: Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci. Rep. 7(11), 5467 (2017)

    Article  Google Scholar 

  2. Hu, X., Zhang, J., Li, J., Zhang, B.: Sparsity-regularized hmax for visual recognition. PloS One 9(1), 215–243 (2014)

    Google Scholar 

  3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  4. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

  5. Ghazaei, G., Alameer, A., Degenaar, P., Morgan, G., Nazarpour, K.: Deep learning-based artificial vision for grasp classification in myoelectric hands. J. Neural Eng. 14(3), 036025 (2017)

    Article  Google Scholar 

  6. Abolghasemi, V., Chen, M., Alameer, A., Ferdowsi, S., Chambers, J., Nazarpour, K.: Incoherent dictionary pair learning: application to a novel open-source database of chinese numbers. IEEE Sig. Process. Lett. 25(4), 472–476 (2018)

    Article  Google Scholar 

  7. Ghazaei, G., Alameer, A., Degenaar, P., Morgan, G., Nazarpour, K.: An exploratory study on the use of convolutional neural networks for object grasp classification. In: Proceedings of the 2nd IET International Conference on Processing Intelligent Signal Processing (ISP), pp. 5–8 (2015)

    Google Scholar 

  8. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25, pp. 1097–1105 (2012)

    Google Scholar 

  10. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, vol. 9, no. 1 (2014)

  11. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  12. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 413–420 (2009)

    Google Scholar 

  13. Alameer, A., Degenaar, P., Nazarpour, K.: Biologically-inspired object recognition system for recognizing natural scene categories. In: International Conference for Students on Applied Engineering (ICSAE), pp. 129–132. IEEE (2016)

    Google Scholar 

  14. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990)

    Article  Google Scholar 

  15. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Syst. Man Cybern. 22(3), 418–435 (1992)

    Article  Google Scholar 

  16. Tumer, K., Ghosh, J.: Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recogn. 29(2), 341–348 (1996)

    Article  Google Scholar 

  17. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 66–75 (1994)

    Article  Google Scholar 

  18. Serre, T., Oliva, A., Poggio, T.: A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. 104(15), 6424–6429 (2007)

    Article  Google Scholar 

  19. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)

    Article  Google Scholar 

  20. Alameer, A., Ghazaei, G., Degenaar, P., Nazarpour, K.: An elastic net-regularized HMAX model of visual processing. In: Proceedings of the 2nd IET International Conference on Processing Intelligent Signal Processing (ISP), pp. 1–4 (2015)

    Google Scholar 

  21. Alameer, A., Ghazaei, G., Degenaar, P., Chambers, J.A., Nazarpour, K.: Object recognition with an elastic net-regularized hierarchical MAX model of the visual cortex. IEEE Sig. Process. Lett. 23(8), 1062–1066 (2016)

    Article  Google Scholar 

  22. Alameer, A., Degenaar, P., Nazarpour, K.: Processing occlusions using elastic-net hierarchical max model of the visual cortex. In: IEEE International Conference on Innovations in Intelligent SysTems and Applications (INISTA), pp. 163–167. IEEE (2017)

    Google Scholar 

  23. Shen, B., Liu, B.-D., Wang, Q.: Elastic net regularized dictionary learning for image classification. Multimedia Tools Appl. 75, 1–14 (2014)

    Google Scholar 

  24. Hyvärinen, A., Gutmann, M., Hoyer, P.O.: Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2. BMC Neurosci. 6(1), 12 (2005)

    Article  Google Scholar 

  25. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255 (2009)

    Google Scholar 

  26. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)

    Google Scholar 

  27. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400, vol. 6, no. 11, pp. 1019–1025 (2013)

  28. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  29. Alameer, A., Akkar, H.A.: ECG signal diagnoses using intelligent systems based on FPGA. Eng. Technol. J. 31(7), 1351–1364 (2013). Part (A) Engineering

    Google Scholar 

  30. Ronquist, F., Huelsenbeck, J.P.: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12), 1572–1574 (2003)

    Article  Google Scholar 

  31. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)

    Article  Google Scholar 

  32. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)

    Google Scholar 

  33. Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  34. Joubert, O.R., Rousselet, G.A., Fize, D., Fabre-Thorpe, M.: Processing scene context: fast categorization and object interference. Vis. Res. 47(26), 3286–3297 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The work of A. Alameer was supported by the Higher Committee for Education Development, Iraq (HCED, D1201017). The work of K. Nazarpour was supported by the Engineering and Physical Sciences Research Council, U.K., grants EP/M025977/1 and EP/M025594/1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Alameer or Kianoush Nazarpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alameer, A., Degenaar, P., Nazarpour, K. (2020). Context-Based Object Recognition: Indoor Versus Outdoor Environments. In: Arai, K., Kapoor, S. (eds) Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing, vol 944. Springer, Cham. https://doi.org/10.1007/978-3-030-17798-0_38

Download citation

Publish with us

Policies and ethics