Skip to main content

Parametric Design of Applied Origami with a Synthetic Computational Approach

  • Conference paper
  • First Online:
Advances in Additive Manufacturing, Modeling Systems and 3D Prototyping (AHFE 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 975))

Included in the following conference series:

  • 2882 Accesses

Abstract

In this paper, we present a series of case studies of origami-like geometries modelled and animated following the principles of the synthetic method applied through parametric modelling applications. The aim of this research is to analyze the benefits and criticalities of the proposed method in the field of applied origami design. The presented method will be compared with the algebraic-based analytical approach highlighting the strengths and weaknesses of both methods. This paper is based on the PhD thesis of the last Author and we present a selection of the most interesting generative algorithms we have studied and designed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuribayashi, K., Tsuchiya, K., You, Z., Tomus, D., Umemoto, M., Ito, T., Sasaki, M.: Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. vol. A 419(1–2), 131–137 (2006)

    Article  Google Scholar 

  2. Lang, R.J., Magleby, S.P., Howell, L.L.: Single degree-of-freedom rigidly foldable cut origami flashers. J. Mech. Robot. 8(3), 031005-1–031005-15 (2016)

    Article  Google Scholar 

  3. Zirbel, S.A., Lang, R.J., Thomson, M.W., Sigel, D.A., Walkemeyer, P.E., Trease, B.P., Magleby, S.P., Howell, L.L.: Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 135(11), 111005-1–111005-11 (2013)

    Article  Google Scholar 

  4. Lee, T., Gattas, J.M.: Geometric design and construction of structurally stabilized accordion shelters. J. Mech. Robot. 8(3), 031009-1–031009-8 (2016)

    Article  Google Scholar 

  5. Gattas, J.M., You, Z.: Design and digital fabrication of folded sandwich structures. Autom. Constr. 63, 79–87 (2016)

    Article  Google Scholar 

  6. Li, S., Vogt, D.M., Rus, D., Wood, R.J.: Fluid-driven origami-inspired artificial muscles. In: Proc. Natl. Acad. Sci., vol. 114, no. 50, pp. 13132–13137 (2017)

    Article  Google Scholar 

  7. Software by Tachi. http://www.tsg.ne.jp/TT/software/

  8. Liu, K., Paulino, G.H.: Highly efficient nonlinear structural analysis of origami assemblages using the MERLIN2 software. In: Origami 7, vol. 4 (Eng. 2), pp. 1167–1182 (2018)

    Google Scholar 

  9. Kawaguchi, K., Ohsaki, M., Takeuchi, T., Liu, K., Paulino, G.H.: MERLIN: A MATLAB implementation to capture highly nonlinear behaviour of non-rigid origami. In: Proc. of IASS Annu. Symp. (International Assoc. Shell Spat. Struct.), vol. 2016, no. 13, pp. 1–10 (2016)

    Google Scholar 

  10. Ghassaei, A., Demaine, E.D., Gershenfeld, N.: Fast, interactive origami simulation using GPU computation. In: Origami 7: Proceedings of the 7th International Meeting on Origami in Science, Mathematics and Education (OSME 2018), Oxford, England, 5–7 September 2018

    Google Scholar 

  11. Mitani, J.: A design method for 3D origami based on rotational sweep. Comput. Aided. Des. Appl. 6(1), 69–79 (2009)

    Article  MathSciNet  Google Scholar 

  12. Grasshopper official page. http://www.grasshopper3d.com/

  13. Zinelli, F.M.: Dei due metodi analitico e sintetico discorso dell’abate. Nella tipografia di Giuseppe Picotti, Venezia (1832)

    Google Scholar 

  14. Loria, G.: Metodi Matematici: Essenza, Tecnica, Applicazioni. Ulrico Hoepli, Milano (1935)

    MATH  Google Scholar 

  15. Cardone, V.: Gaspard Monge padre dell’ingegnere contemporaneo. DEI - Tipografia del Genio Civile, Roma (2017)

    Google Scholar 

  16. Migliari, R., Baglioni, L., Fallavollita, F., Fasolo, M., Mancini, F.M., Romor, J., Salvatore, M.: De prospectiva pingendi. TOMO II [Disegni]. Istituto Poligrafico e Zecca dello Stato, Roma (2016)

    Google Scholar 

  17. Migliari, R., Baglioni, L., Fallavollita, F., Fasolo, M., Mancini, F.M., Romor, J., Salvatore, M.: De prospectiva pingendi. TOMO II [Disegni]. Istituto Poligrafico e Zecca dello Stato, Roma (2017)

    Google Scholar 

  18. Fallavollita, F., Salvatore, M.: The construction of the principal axes of the quadratic surfaces. Disegnare Idee Immagini 46, 42–51 (2013)

    Google Scholar 

  19. Migliari, R.: Geometria Descrittiva, vol. 1–2. Città Studi edizioni, Novara (2009)

    Google Scholar 

  20. Rhinoceros official page. https://www.rhino3d.com/

  21. Abel, Z., Cantarella, J., Demaine, E.D., Eppstein, D., Hull, T.C., Ku, J.S., Lang, R.J., Tachi, T.: Rigid origami vertices: conditions and forcing sets. J. Comput. Geom. 7(1), 171–184 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Mitani, J., Igarashi, T.: Interactive design of planar curved folding by reflection. In: Pacific Graphics (Pacific Conference on Computer Graphics and Applications - Short Papers), pp. 77–81 (2011)

    Google Scholar 

  23. Huffman, D.A.: Curvature and creases: a primer on paper. IEEE Trans. Comput., vol. C-25, no. 10, pp. 1010—1019 (1976)

    Google Scholar 

  24. Hull, T.C.: Project Origami. A K Peters/CRC Press, New York (2006)

    Book  Google Scholar 

  25. Tachi, T.: Generalization of rigid foldable quadrilateral mesh origami. J. Int. Assoc. Shell Spat. Struct 50(October), 2287–2294 (2009)

    Google Scholar 

  26. Casale, A., Valenti, G.M., Calvano, M.: Architettura delle superfici piegate: le geometrie che muovono gli origami. Edizioni K, Roma (2013)

    Google Scholar 

  27. Foschi, R., Tachi, T.: Designing self-blocking systems with non-flat-foldable degree-4 vertices. In: Origami 7, vol. 3 (Eng. 1), pp. 795–809 (2018)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the University of Bologna and by the University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Ivan Apollonio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Apollonio, F.I., Fallavollita, F., Foschi, R. (2020). Parametric Design of Applied Origami with a Synthetic Computational Approach. In: Di Nicolantonio, M., Rossi, E., Alexander, T. (eds) Advances in Additive Manufacturing, Modeling Systems and 3D Prototyping. AHFE 2019. Advances in Intelligent Systems and Computing, vol 975. Springer, Cham. https://doi.org/10.1007/978-3-030-20216-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20216-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20215-6

  • Online ISBN: 978-3-030-20216-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics