Skip to main content

Electrodermal Activity in Ambulatory Settings: A Narrative Review of Literature

  • Conference paper
  • First Online:
Advances in Neuroergonomics and Cognitive Engineering (AHFE 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 953))

Included in the following conference series:

Abstract

Electrodermal activity (EDA) is a portable, non-invasive and wearable sensor that measures skin electrical properties to track correlates of autonomic nervous system activity. Although EDA utilization is sparse compared to some other biomedical signals in ambulatory settings, it can be a potentially helpful adjunct tool in neuroergonomics studies and mobile brain and body research. This paper summarizes EDA physiological principles and methodology including data acquisition, signal processing, and data analysis approaches. In addition, use of EDA in diverse neuroergonomic application areas, such as in psychiatry, neurology, operator and consumer assessment, virtual reality and gaming have been outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayaz, H., Dehais, F.: Neuroergonomics: The Brain at Work and in Everyday Life. Elsevier, Academic Press, London (2019)

    Google Scholar 

  2. Curtin, A., Ayaz, H.: The age of neuroergonomics: towards ubiquitous and continuous measurement of brain function with fNIRS. Japan. Psychol. Res. 60(4), 374–386 (2018)

    Article  Google Scholar 

  3. Boucsein, W.: Electrodermal Activity, 2nd edn. Springer Science + Business Media, New York (2012)

    Book  Google Scholar 

  4. Critchley, H.D.: Electrodermal responses: what happens in the brain. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 8, 132–142 (2002)

    Google Scholar 

  5. Carlson, N.R.: Physiology of Behavior. Allyn & Bacon, Boston (1994)

    Google Scholar 

  6. Dawson, M.E., Schell, A.M., Filion, D.L.: The electrodermal system. Handb. Psychophysiol. 2, 200–223 (2007)

    Google Scholar 

  7. Wallin, B.G.: Sympathetic nerve activity underlying electrodermal and cardiovascular reactions in man. Psychophysiology 18, 470–476 (1981)

    Article  Google Scholar 

  8. Sharma, M., Kacker, S., Sharma, M.: A brief introduction and review on galvanic skin response. Int. J. Med. Res. Prof. 2, 13–17 (2016)

    Article  Google Scholar 

  9. Liu, Y., Du, S.: Psychological Stress Level Detection Based on Electrodermal Activity (2017)

    Google Scholar 

  10. Handler, M., Nelson, R., Krapohl, D., Honts, C.: An EDA primer for polygraph examiners. Polygraph 39(2), 68–108 (2010)

    Google Scholar 

  11. Poh, M.-Z., Swenson, N.C., Picard, R.W.: A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Eng. 57, 1243–1252 (2010)

    Article  Google Scholar 

  12. Sharma, M., Kacker, S., Sharma, M.: A brief introduction and review on galvanic skin response. Int. J. Med. Res. Prof. 2, 13–17 (2016)

    Article  Google Scholar 

  13. Posada-Quintero, H.F., Rood, R., Noh, Y., Burnham, K., Pennace, J., Chon, K.H.: Dry carbon/salt adhesive electrodes for recording electrodermal activity. Sens. Actuators, A 257, 84–91 (2017)

    Article  Google Scholar 

  14. Lanata, A., Valenza, G., Scilingo, E.P.: A novel EDA glove based on textile-integrated electrodes for affective computing. Med. Biol. Eng. Compu. 50, 1163–1172 (2012)

    Article  Google Scholar 

  15. Boucsein, W., Fowles, D.C., Grimnes, S., Ben-Shakhar, G., Roth, W.T., Dawson, M.E., Filion, D.L.: Publication recommendations for electrodermal measurements. Psychophysiology 49, 1017–1034 (2012)

    Article  Google Scholar 

  16. Cowley, B., Torniainen, J.: A short review and primer on electrodermal activity in human computer interaction applications (2016)

    Google Scholar 

  17. Bandara, D., Song, S., Hirshfield, L., Velipasalar, S.: A more complete picture of emotion using electrocardiogram and electrodermal activity to complement cognitive data. In: Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience, pp. 287–298. Springer International Publishing (2016)

    Google Scholar 

  18. Dimberg, U.: Facial electromyographic reactions and autonomic activity to auditory stimuli. Biol. Psychol. 31, 137–147 (1990)

    Article  Google Scholar 

  19. Wobrock, D., Frey, J., Graeff, D., De La Rivière, J.-B., Castet, J., Lotte, F.: Continuous mental effort evaluation during 3d object manipulation tasks based on brain and physiological signals. In: Human-Computer Interaction, pp. 472–487. Springer (2015)

    Google Scholar 

  20. Holper, L., Scholkmann, F., Wolf, M.: The relationship between sympathetic nervous activity and cerebral hemodynamics and oxygenation: a study using skin conductance measurement and functional near-infrared spectroscopy. Behav. Brain Res. 270, 95–107 (2014)

    Article  Google Scholar 

  21. Aslanidis, T.: Electrodermal activity: applications in perioperative care (2014)

    Google Scholar 

  22. Ishchenko, A., Shev’ev, P.: Automated complex for multiparameter analysis of the galvanic skin response signal. Biomed. Eng. 23, 113–117 (1989)

    Article  Google Scholar 

  23. Cacioppo, J.T., Tassinary, L.G., Berntson, G.: Handbook of Psychophysiology. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  24. Braithwaite, J.J., Watson, D.G., Jones, R., Rowe, M.: A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments. Psychophysiology 49, 1017–1034 (2013)

    Google Scholar 

  25. Bach, D.R., Friston, K.J., Dolan, R.J.: An improved algorithm for model-based analysis of evoked skin conductance responses. Biol. Psychol. 94, 490–497 (2013)

    Article  Google Scholar 

  26. Kelsey, M., Palumbo, R.V., Urbaneja, A., Akcakaya, M., Huang, J., Kleckner, I.R., Barrett, L.F., Quigley, K.S., Sejdic, E., Goodwin, M.S.: Artifact detection in electrodermal activity using sparse recovery. In: Compressive Sensing VI: From Diverse Modalities to Big Data Analytics, p. 102110D. International Society for Optics and Photonics (2017)

    Google Scholar 

  27. Taylor, S., Jaques, N., Chen, W., Fedor, S., Sano, A., Picard, R.: Automatic identification of artifacts in electrodermal activity data. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1934–1937. IEEE (2015)

    Google Scholar 

  28. Chen, W., Jaques, N., Taylor, S., Sano, A., Fedor, S., Picard, R.W.: Wavelet-based motion artifact removal for electrodermal activity. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6223–6226. IEEE (2015)

    Google Scholar 

  29. Kelsey, M., Akcakaya, M., Kleckner, I.R., Palumbo, R.V., Barrett, L.F., Quigley, K.S., Goodwin, M.S.: Applications of sparse recovery and dictionary learning to enhance analysis of ambulatory electrodermal activity data. Biomed. Signal Process Control 40, 58–70 (2018)

    Article  Google Scholar 

  30. Greco, A., Valenza, G., Scilingo, E.P.: Advances in Electrodermal Activity Processing with Applications for Mental Health: From Heuristic Methods to Convex Optimization. Springer Publishing Company, Incorporated (2016)

    Chapter  Google Scholar 

  31. Bach, D.R., Flandin, G., Friston, K.J., Dolan, R.J.: Time-series analysis for rapid event-related skin conductance responses. J. Neurosci. Methods 184, 224–234 (2009)

    Article  Google Scholar 

  32. Alexander, D.M., Trengove, C., Johnston, P., Cooper, T., August, J., Gordon, E.: Separating individual skin conductance responses in a short interstimulus-interval paradigm. J. Neurosci. Methods 146, 116–123 (2005)

    Article  Google Scholar 

  33. Benedek, M., Kaernbach, C.: A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 190, 80–91 (2010)

    Article  Google Scholar 

  34. Benedek, M., Kaernbach, C.: Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology 47, 647–658 (2010)

    Google Scholar 

  35. Bach, D.R.: A head-to-head comparison of SCRalyze and Ledalab, two model-based methods for skin conductance analysis. Biol. Psychol. 103, 63–68 (2014)

    Article  Google Scholar 

  36. Greco, A., Valenza, G., Lanata, A., Scilingo, E.P., Citi, L.: cvxEDA: a convex optimization approach to electrodermal activity processing. IEEE Trans. Biomed. Eng. 63, 797–804 (2016)

    Google Scholar 

  37. Posada-Quintero, H.F., Florian, J.P., Orjuela-Cañón, A.D., Aljama-Corrales, T., Charleston-Villalobos, S., Chon, K.H.: Power spectral density analysis of electrodermal activity for sympathetic function assessment. Ann. Biomed. Eng. 44, 3124–3135 (2016)

    Article  Google Scholar 

  38. Ghaderyan, P., Abbasi, A.: An efficient automatic workload estimation method based on electrodermal activity using pattern classifier combinations. Int. J. Psychophysiol. 110, 91–101 (2016)

    Article  Google Scholar 

  39. Ghaderyan, P., Abbasi, A., Ebrahimi, A.: Time-varying singular value decomposition analysis of electrodermal activity: a novel method of cognitive load estimation. Measurement 126, 102–109 (2018)

    Article  Google Scholar 

  40. Dehzangi, O., Rajendra, V., Taherisadr, M.: Wearable driver distraction identification on-the-road via continuous decomposition of galvanic skin responses. Sensors (Basel) 18, 503 (2018)

    Article  Google Scholar 

  41. Boyce, M.W., Goldberg, B., Moss, J.D.: Electrodermal activity analysis for training of military tactics. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 1339–1343. Sage, Los Angeles, CA (2016)

    Article  Google Scholar 

  42. Wilson, G.F.: An analysis of mental workload in pilots during flight using multiple psychophysiological measures. Int. J. Aviat. Psychol. 12, 3–18 (2002)

    Article  Google Scholar 

  43. Friedman, D., Suji, K., Slater, M.: SuperDreamCity: an immersive virtual reality experience that responds to electrodermal activity. In: International Conference on Affective Computing and Intelligent Interaction, pp. 570–581. Springer (2007)

    Google Scholar 

  44. Toups, Z.O., Graeber, R., Kerne, A., Tassinary, L., Berry, S., Overby, K., Johnson, M.: A design for using physiological signals to affect team game play (2006)

    Google Scholar 

  45. Drachen, A., Nacke, L.E., Yannakakis, G., Pedersen, A.L.: Correlation between heart rate, electrodermal activity and player experience in first-person shooter games. In: Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games, pp. 49–54. ACM (2010)

    Google Scholar 

  46. Egan, D., Brennan, S., Barrett, J., Qiao, Y., Timmerer, C., Murray, N.: An evaluation of Heart Rate and ElectroDermal Activity as an objective QoE evaluation method for immersive virtual reality environments. In: 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6. IEEE (2016)

    Google Scholar 

  47. Leiner, D., Fahr, A., Früh, H.: EDA positive change: a simple algorithm for electrodermal activity to measure general audience arousal during media exposure. Commun. Methods Measures 6, 237–250 (2012)

    Article  Google Scholar 

  48. Silveira, F., Eriksson, B., Sheth, A., Sheppard, A.: Predicting audience responses to movie content from electro-dermal activity signals (2013)

    Google Scholar 

  49. Wu, Y., Liu, Y., Su, N., Ma, S., Ou, W.: Predicting online shopping search satisfaction and user behaviors with electrodermal activity. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 855–856. International World Wide Web Conferences Steering Committee (2017)

    Google Scholar 

  50. Holper, L., Wolf, M., Tobler, P.N.: Comparison of functional near-infrared spectroscopy and electrodermal activity in assessing objective versus subjective risk during risky financial decisions. NeuroImage 84, 833–842 (2014)

    Article  Google Scholar 

  51. Carbon, C.-C., Michael, L., Leder, H.: Design evaluation by combination of repeated evaluation technique and measurement of electrodermal activity. Res. Eng. Design 19, 143–149 (2008)

    Article  Google Scholar 

  52. Greco, A., Valenza, G., Lanata, A., Rota, G., Scilingo, E.P.: Electrodermal activity in bipolar patients during affective elicitation. IEEE J. Biomed. Health Inf. 18, 1865–1873 (2014)

    Article  Google Scholar 

  53. Myslobodsky, M.S., Horesh, N.: Bilateral electrodermal activity depressive patients. Biol. Psychol. 6, 111–120 (1978)

    Article  Google Scholar 

  54. Fung, M.T., Raine, A., Loeber, R., Lynam, D.R., Steinhauer, S.R., Venables, P.H., Stouthamer-Loeber, M.: Reduced electrodermal activity in psychopathy-prone adolescents. J. Abnorm. Psychol. 114, 187–196 (2005)

    Article  Google Scholar 

  55. Zahn, T.P., Pickar, D., van Kammen, D.P.: Neuroleptic effects on autonomic activity in schizophrenia: between-group and within-subject paradigms and comparisons with controls. Schizophr. Bull. 27(3), 503–515 (2001)

    Article  Google Scholar 

  56. Hernandez, J., Morris, R.R., Picard, R.W.: Call center stress recognition with person-specific models. In: International Conference on Affective Computing and Intelligent Interaction, pp. 125–134. Springer (2011)

    Google Scholar 

  57. Posada-Quintero, H.F., Florian, J.P., Orjuela-Cañón, A.D., Chon, K.H.: Electrodermal activity is sensitive to cognitive stress under water. Front. Physiol. 8, 1128 (2018)

    Article  Google Scholar 

  58. Choi, J., Ahmed, B., Gutierrez-Osuna, R.: Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans. Inf. Technol. Biomed. 16, 279–286 (2012)

    Article  Google Scholar 

  59. Paananen, K., Vaununmaa, R., Holma, J., Karvonen, A., Kykyri, V.-L., Tsatsishvili, V., Kaartinen, J., Penttonen, M., Seikkula, J.: Electrodermal activity in couple therapy for intimate partner violence. Contemp. Fam. Ther. 40, 138–152 (2018)

    Article  Google Scholar 

  60. El-Sheikh, M., Keller, P.S., Erath, S.A.: Marital conflict and risk for child maladjustment over time: skin conductance level reactivity as a vulnerability factor. J. Abnorm. Child Psychol. 35, 715–727 (2007)

    Article  Google Scholar 

  61. Prince, E.B., Kim, E.S., Wall, C.A., Gisin, E., Goodwin, M.S., Simmons, E.S., Chawarska, K., Shic, F.: The relationship between autism symptoms and arousal level in toddlers with autism spectrum disorder, as measured by electrodermal activity. Autism 21, 504–508 (2017)

    Article  Google Scholar 

  62. Lane, S., Reynolds, S., Thacker, L.: Sensory over-responsivity and ADHD: differentiating using electrodermal responses, cortisol, and anxiety. Front. Integr. Neurosci. 4, 8 (2010)

    Article  Google Scholar 

  63. Stevens, S., Gruzelier, J.: Electrodermal activity to auditory stimuli in autistic, retarded, and normal children. J. Autism Dev. Disord. 14, 245–260 (1984)

    Article  Google Scholar 

  64. Poh, M.-Z., Loddenkemper, T., Swenson, N.C., Goyal, S., Madsen, J.R., Picard, R.W.: Continuous monitoring of electrodermal activity during epileptic seizures using a wearable sensor. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4415–4418. IEEE (2010)

    Google Scholar 

  65. Poh, M.Z., Loddenkemper, T., Reinsberger, C., Swenson, N.C., Goyal, S., Sabtala, M.C., Madsen, J.R., Picard, R.W.: Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia 53, e93–e97 (2012)

    Article  Google Scholar 

  66. Rabavilas, A.D.: Electrodermal activity in low and high alexithymia neurotic patients. Psychother. Psychosom. 47, 101–104 (1987)

    Article  Google Scholar 

  67. Melander, C., Martinsson, J., Gustafsson, S.: Measuring electrodermal activity to improve the identification of agitation in individuals with dementia. Dement. Geriatr. Cogn. Disord. Extra 7, 430–439 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigit Topoglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Topoglu, Y., Watson, J., Suri, R., Ayaz, H. (2020). Electrodermal Activity in Ambulatory Settings: A Narrative Review of Literature. In: Ayaz, H. (eds) Advances in Neuroergonomics and Cognitive Engineering. AHFE 2019. Advances in Intelligent Systems and Computing, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-030-20473-0_10

Download citation

Publish with us

Policies and ethics