Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 245))

  • 848 Accesses

Abstract

This chapter initiates the book narration. It formulates the rationale for the Control Performance Assessment (CPA). Process improvement is the main raison d’être for control systems. The relationship is straightforward. Better control causes higher performance. Despite this clear relation and common understanding of the fact, the majority of the industrial loops is neither well tuned nor properly designed. Control engineers require tools and indexes that would measure how good the control system is. Moreover they require suggestions for what should be done to improve existing poor situation. The CPA research history started in 1960s and continues till nowadays. The research is ongoing. Its importance did not decrease. During fifty years of the interest several different approaches have been investigated, like data driven or model-based approaches defined using different domains. Simultaneously, as new control strategies have emerged, according assessment approaches have developed as well. Almost each control strategy, starting from SISO PID loops up to advanced control predictive and adaptive algorithms, has been addressed in the research and specific methodologies have been proposed. It has to be noted that CPA task has been initiated by industry, is being done for industry and is perpetually validated by industry. Practical aspects, especially derived from the process industry are addressed and constitutes an important aspect of this chapter and the whole book.

L’essentiel est invisible pour les yeux.

– Antoine de Saint-Exupéry

Don’t tell people how to do things, tell them what to do and let them surprise you with their results.

– George S. Patton Jr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, N., Huang, B., Tamayo, E.C.: Assessing model prediction control (MPC) performance. 2. Bayesian approach for constraint tuning. Indus. Eng. Chem. Res. 46(24), 8112–8119 (2007)

    Article  Google Scholar 

  2. Alagoz, B.B., Tan, N., Deniz, F.N., Keles, C.: Implicit disturbance rejection performance analysis of closed loop control systems according to communication channel limitations. IET Control Theor. Appl. 9(17), 2522–2531 (2015)

    Article  MathSciNet  Google Scholar 

  3. Ali, M.K.: Assessing economic benefits of advanced control. In: 5th Asian Control Conference, Process Control in the Chemical Industries, Chemical Engineering Department, pp. 146–159. King Saud University, Riyadh, Kingdom of Saudi Arabia (2002)

    Google Scholar 

  4. Åström, K.J.: Computer control of a paper machine—an application of linear stochastic control theory. IBM J. 11, 389–405 (1967)

    Article  Google Scholar 

  5. Åström, K.J.: Introduction to Stochastic Control Theory. Mathematics in Science and Engineering, vol. 70. Academic Press (1970)

    Google Scholar 

  6. Badwe, A.S., Gudi, R.D., Patwardhan, R.S., Shah, S.L., Patwardhan, S.C.: Detection of model-plant mismatch in MPC applications. J. Process Control 19(8), 1305–1313 (2009)

    Article  Google Scholar 

  7. Basseville, M.: On-board component fault detection and isolation using the statistical local approach. Automatica 34(11), 1391–1415 (1998)

    Article  MATH  Google Scholar 

  8. Bauer, M., Craig, I.K.: Economic assessment of advanced process control—a survey and framework. J. Process Control 18(1), 2–18 (2008)

    Article  Google Scholar 

  9. Bauer, M., Craig, I.K., Tolsma, E., de Beer, H.: A profit index for assessing the benefits of process control. Indus. Eng. Chem. Res. 46(17), 5614–5623 (2007)

    Article  Google Scholar 

  10. Bauer, M., Horch, A., Xie, L., Jelali, M., Thornhill, N.: The current state of control loop performance monitoring—a survey of application in industry. J. Process Control 38, 1–10 (2016)

    Article  Google Scholar 

  11. Begum, G.K., Rao, S.A., Radhakrishnan, T.K.: Performance assessment of control loops involving unstable systems for set point tracking and disturbance rejection. J. Taiwan Inst. Chem. Eng. 85, 1–17 (2018)

    Article  Google Scholar 

  12. Bhandare, D.S., Kulkarni, N.R.: Performances evaluation and comparison of PID controller and fuzzy logic controller for process liquid level control. In: 2015 15th International Conference on Control, Automation and Systems (ICCAS), pp. 1347–1352 (2015)

    Google Scholar 

  13. Bialic, G.: Methods of control performance assessment for sampled data systems working under stationary stoachastics disturbances. Ph.D. thesis, Dissertation of Technical University of Opole, Poland (2006)

    Google Scholar 

  14. Bialic, G., Błachuta, M.J.: Performance assessment of control loops with PID controllers based on correlation and spectral analysis. In: Proceedings of the 12th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR 2006 (2006)

    Google Scholar 

  15. Botelho, V.R., Trierweiler, J.O., Farenzena, M., Longhi, L.G.S., Zanin, A.C., Teixeira, H.C.G., Duraiski, R.G.: Model assessment of MPCs with control ranges: an industrial application in a delayed coking unit. Control Eng. Pract. 84, 261–273 (2019)

    Article  Google Scholar 

  16. Boverie, S., Demaya, B., Ketata, R., Titli, A.: Performance evaluation of fuzzy controllers. IFAC Proc. Vol. 25(6), 69–74 (1992). IFAC Symposium on Intelligent Components and Instruments for Control Applications (SICICA’92), Malaga, Spain, 20–22 May 1992

    Google Scholar 

  17. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San Franciso, CA (1970)

    Google Scholar 

  18. Cano-Izquierdo, J.M., Ibarrola, J., Kroeger, M.A.: Control loop performance assessment with a dynamic neuro-fuzzy model (dFasArt). IEEE Trans. Autom. Sci. Eng. 9(2), 377–389 (2012)

    Article  Google Scholar 

  19. Carelli, A.C., da Souza Jr, M.B.: GPC controller performance monitoring and diagnosis applied to a diesel hydrotreating reactor. IFAC Proc. Vol. 42(11), 976–981 (2009)

    Article  Google Scholar 

  20. Chen, J.: Statistical methods for process monitoring and control. Master’s thesis, McMaster University, Hamilton, Ontario, Canada (2014)

    Google Scholar 

  21. Choudhury, M.A.A.S., Shah, S.L., Thornhill, N.F.: Detection and quantification of control valve stiction. IFAC Proc. 37(9), 865–870 (2004a). 7th IFAC Symposium on Dynamics and Control of Process Systems 2004 (DYCOPS -7), Cambridge, USA, 5–7 July 2004

    Google Scholar 

  22. Choudhury, M.A.A.S, Shah, S.L, Thornhill, N.F.: Diagnosis of poor control-loop performance using higher-order statistics. Automatica 40(10), 1719–1728 (2004b)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cross, R., Iqbal, A.: The rank xerox experience: benchmarking ten years on. In: IFIP Advances in Information and Communication Technology, Benchmarking—Theory and Practice, pp. 3–10 (1995)

    Google Scholar 

  24. Daneshwar, M.A., Noh, N.M.: Detection of stiction in flow control loops based on fuzzy clustering. Control Eng. Pract. 39, 23–34 (2015)

    Article  Google Scholar 

  25. Das, L., Srinivasan, B., Rengaswamy, R.: Multivariate control loop performance assessment with Hurst exponent and mahalanobis distance. IEEE Trans. Control Syst. Technol. 24(3), 1067–1074 (2016)

    Article  Google Scholar 

  26. Desborough, L., Harris, T.J.: Performance assessment measures for univariate feedback control. Can. J. Chem. Eng. 70(6), 1186–1197 (1992)

    Article  Google Scholar 

  27. Desborough, L., Harris, T.J.: Performance assessment measures for univariate feedforward/feedback control. Can. J. Chem. Eng. 71(4), 605–616 (1993)

    Article  Google Scholar 

  28. DeVries, W., Wu, S.: Evaluation of process control effectiveness and diagnosis of variation in paper basis weight via multivariate time-series analysis. IEEE Trans. Autom. Control 23, 702–708 (1978)

    Article  Google Scholar 

  29. Domański, P.D.: Non-Gaussian and persistence measures for control loop quality assessment. Chaos Interdiscip. J. Nonlinear Sci. 26(4), 043105 (2016)

    Article  MathSciNet  Google Scholar 

  30. Domański, P.D.: On-line control loop assessment with non-Gaussian statistical and fractal measures. In: Proceedings of 2017 American Control Conference, Seattle, USA, pp. 555–560 (2017)

    Google Scholar 

  31. Domański, P.D., Ławryńczuk, M.: Assessment of predictive control performance using fractal measures. Nonlinear Dyn. 89, 773–790 (2017a)

    Article  Google Scholar 

  32. Domański, P.D., Ławryńczuk, M.: Assessment of the GPC control quality using non-Gaussian statistical measures. Int. J. Appl. Math. Comput. Sci. 27(2), 291–307 (2017b)

    Article  MathSciNet  MATH  Google Scholar 

  33. Domański, P.D., Ławryńczuk, M.: Control quality assessment of nonlinear model predictive control using fractal and entropy measures. In: Preprints of the First International Nonlinear Dynamics Conference NODYCON 2019, Rome, Italy (2019)

    Google Scholar 

  34. Domański, P.D., Golonka, S., Jankowski, R., Kalbarczyk, P., Moszowski, B.: Control rehabilitation impact on production efficiency of ammonia synthesis installation. Ind. Eng. Chem. Res. 55(39), 10366–10376 (2016)

    Article  Google Scholar 

  35. Duarte-Barros, R.L., Park, S.W.: Assessment of model predictive control performance criteria. J. Chem. Chem. Eng. 9, 127–135 (2015)

    Google Scholar 

  36. El-Ferik, S., Shareef, M.N., Ettaleb, L.: Detection and diagnosis of plant-wide oscillations using GA based factorization. J. Process Control 22(1), 321–329 (2012)

    Article  Google Scholar 

  37. Ender, D.: Process control performance: not as good as you think. Control Eng. 40(10), 180–190 (1993)

    Google Scholar 

  38. Eriksson, P.G., Isaksson, A.J.: Some aspects of control loop performance monitoring. In: 1994 Proceedings of IEEE International Conference on Control and Applications, vol. 2, pp. 1029–1034 (1994)

    Google Scholar 

  39. Ettaleb, L.: Control loop performance assessment and oscillation detection. Ph.D. thesis, University of British Columbia, Canada (1999)

    Google Scholar 

  40. Farenzena, M.: Novel methodologies for assessment and diagnostics in control loop management. Ph.D. thesis, Dissertation of Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil (2008)

    Google Scholar 

  41. Gabor, J., Pakulski, D., Domański, P.D., Świrski, K.: Closed loop NOx control and optimization using neural networks. In: IFAC Symposium on Power Plants and Power Systems Control, Brussels, Belgium, pp. 188–196 (2000)

    Google Scholar 

  42. Galvez, J.M.: Performance assessment of model reference adaptive control—a benchmark based comparison among techniques. In: ABCM Symposium Series in Mechatronics, vol. 5, pp. 186–195 (2012)

    Google Scholar 

  43. Gao, J., Patwardhan, R., Akamatsu, K., Hashimoto, Y., Emoto, G., Shah, S.L., Huang, B.: Performance evaluation of two industrial MPC controllers. Control Eng. Pract. 11(12), 1371–1387 (2003). 2002 IFAC World Congress

    Article  Google Scholar 

  44. Gao, X., Yang, F., Shang, C., Huang, D.: A review of control loop monitoring and diagnosis: prospects of controller maintenance in big data era. Chin. J. Chem. Eng. 24(8), 952–962 (2016)

    Article  Google Scholar 

  45. Gao, X., Yang, F., Shang, C., Huang, D.: A novel data-driven method for simultaneous performance assessment and retuning of PID controllers. Ind. Eng. Chem. Res. 56(8), 2127–2139 (2017)

    Article  Google Scholar 

  46. Ghraizi, R.A., Martínez, E.C., de Prada, C.: Control loop performance monitoring using the permutation entropy of error residuals. IFAC Proc. Vol. 42(11), 494–499 (2009). 7th IFAC Symposium on Advanced Control of Chemical Processes

    Google Scholar 

  47. Gomez, D., Moya, E.J., Baeyens, E.: Control performance assessment: a general survey. In: de Leon, F., de Carvalho, A.P., Rodriguez-Gonzalez, S., de Paz Santana, J.F., Rodriguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence: 7th International Symposium, pp. 621–628. Springer, Berlin (2010)

    Google Scholar 

  48. Grimble, M.J.: Controller performance benchmarking and tuning using generalised minimum variance control. Automatica 38(12), 2111–2119 (2002a)

    Article  MathSciNet  MATH  Google Scholar 

  49. Grimble, M.J.: Restricted structure controller tuning and performance assessment. IEE Proc. Control Theor. Appl. 149(1), 8–16 (2002b)

    Article  Google Scholar 

  50. Grimble, M.J.: Restricted structure control loop performance assessment for PID controllers and state-space systems. Asian J. Control 5(1), 39–57 (2003)

    Article  Google Scholar 

  51. Guo, Z., Xie, L., Ye, T., Horch, A.: Online detection of time-variant oscillations based on improved ITD. Control Eng. Pract. 32, 64–72 (2014)

    Article  Google Scholar 

  52. Gupta, P., Guenther, K., Hodgkinson, J., Jacklin, S., Richard, M., Schumann, J., Soares, F.: Performance monitoring and assessment of neuro-adaptive controllers for aerospace applications using a Bayesian approach. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, CA, USA, AIAA 2005, p. 6451 (2005)

    Google Scholar 

  53. Gustafsson, F.: Adaptive filtering and change detection. Wiley, New York (2000)

    Google Scholar 

  54. Hadjiiski, M., Georgiev, Z.: Benchmarking of process control performance. In: Problems of Engineering, Cybernetics and Robotics, vol. 55, pp. 103–110. Bulgarian Academy of Sciences, Sofia, Bulgaria (2005)

    Google Scholar 

  55. Hägglund, T.: Automatic detection of sluggish control loops. Control Eng. Pract. 7(12), 1505–1511 (1999)

    Article  Google Scholar 

  56. Hang, C.C., Tan, C.H., Chan, W.P.: A performance study of control systems with dead time. IEEE Trans. Ind. Electron. Control Instrum. IECI 27(3), 234–241 (1980)

    Article  Google Scholar 

  57. Harris, T.J.: Assessment of closed loop performance. Can. J. Chem. Eng. 67, 856–861 (1989)

    Article  Google Scholar 

  58. Harris, T.J., Seppala, C.T.: Recent developments in controller performance monitoring and assessment techniques. In: Proceedings of the Sixth International Conference on Chemical Process Control, pp. 199–207 (2001)

    Google Scholar 

  59. Harris, T.J., Seppala, C.T., Desborough, L.D.: A review of performance monitoring and assessment techniques for univariate and multivariate control systems. J. Process Control 9(1), 1–17 (1999)

    Article  Google Scholar 

  60. Horch, A.: A simple method for detection of stiction in control valves. Control Eng. Pract. 7(10), 1221–1231 (1999)

    Article  Google Scholar 

  61. Horch, A., Heiber, F.: On evaluating control performance on large data sets. IFAC Proc. Vol. 37(9), 535–540 (2004)

    Article  Google Scholar 

  62. Howard, R., Cooper, D.: A novel pattern-based approach for diagnostic controller performance monitoring. Control Eng. Pract. 18(3), 279–288 (2010)

    Article  Google Scholar 

  63. Huang, B.: Multivariate statistical methods for control loop performance assessment. Ph.D. thesis, University of Alberta, Department of Chemical and Material Engineering, Canada (1997)

    Google Scholar 

  64. Huang, B., Shah, S.L.: Limits of control loop performance: practical measures of control loop performance assessment. In: AlChE Annual Meeting (1996)

    Google Scholar 

  65. Huang, B., Shah, S.L., Kwok, E.K.: On-line control performance monitoring of MIMO processes. In: Proceedings of the 1995 American Control Conference, vol. 2, pp. 1250–1254 (1995)

    Google Scholar 

  66. Huang, Q., Zhang, Q.: Research on multivariable control performance assessment techniques. In: 2011 International Symposium on Advanced Control of Industrial Processes (ADCONIP), pp. 508–511. IEEE (2011)

    Google Scholar 

  67. Huba, M.: Performance measures and the robust and optimal control design. IFAC-PapersOnLine 51(4):960–965 (2018). 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control PID 2018

    Google Scholar 

  68. Hugo, A.: Process control performance monitoring and assessment. Control Arts Inc. http://www.controlarts.com/ (2001)

  69. Jelali, M.: An overview of control performance assessment technology and industrial applications. Control Eng. Pract. 14(5), 441–466 (2006)

    Article  Google Scholar 

  70. Jelali, M.: Estimation of valve stiction in control loops using separable least-squares and global search algorithms. J. Process Control 18(7), 632–642 (2008)

    Article  Google Scholar 

  71. Jelali, M.: Estimation of valve stiction using separable least-squares and global search algorithms. In: Jelali, M., Huang, B. (eds.) Detection and Diagnosis of Stiction in Control Loops: State of the Art and Advanced Methods, pp. 205–228. Springer, London (2010)

    Chapter  Google Scholar 

  72. Jelali, M.: Control Performance Management in Industrial Automation: Assessment, Diagnosis and Improvement of Control Loop Performance. Springer-Verlag, London (2013)

    Chapter  Google Scholar 

  73. Jelali, M., Thormann, M., Wolff, A., Müller, T., Loredo, L.R., Sanfilippo, F., Zangari, G., Foerster, P.: Enhancement of product quality and production system reliability by continuous performance assessment of automation systems (AUTOCHECK). Technical Report Final report to Contract No RFS-CR03045, EUR 23205, Office for Official Publications of the European Communities, Luxemburg (2008)

    Google Scholar 

  74. Jiang, D.Y., Hu, L.S., Shi, P.: Performance assessment of switched control systems based on tensor space approach. Int. J. Adap. Control Sig. Process. 30(4), 634–663 (2016)

    Article  MathSciNet  Google Scholar 

  75. Jiang, H., Choudhury, M.A.A.S., Shah, S.L.: Detection and diagnosis of plant-wide oscillations from industrial data using the spectral envelope method. J. Process Control 17(2), 143–155 (2007)

    Article  Google Scholar 

  76. Jiang, H., Shah, S.L., Huang, B., Wilson, B., Patwardhan, R., Szeto, F.: Performance assessment and model validation of two industrial MPC controllers. IFAC Proc. Vol. 41(2), 8387–8394 (2008)

    Article  Google Scholar 

  77. Jimoh, M.T.: A vision for MPC performance maintenance. Ph.D. thesis, Dissertation of the College of Science and Engineeiring, University of Glasgow (2013)

    Google Scholar 

  78. Julien, R.H., Foley, M.W., Cluett, W.R.: Performance assessment using a model predictive control benchmark. J. Process Control 14(4), 441–456 (2004)

    Article  Google Scholar 

  79. Kadali, R., Huang, B.: Controller performance analysis with LQG benchmark obtained under closed loop conditions. ISA Trans. 41(4), 521–537 (2002)

    Article  Google Scholar 

  80. Kala, H., Deepakraj, D., Gopalakrishnan, P., Vengadesan, P., Iyyar, M.K.: Implicit disturbance rejection performance analysis of closed loop control systems according to communication channel limitations. Int. J. Innov. Res. Electric. Electron. Instrum. Control Eng. 2(3), 1311–1314 (2014)

    Google Scholar 

  81. Kalman, R.E.: Contribution to the theory of optimal control. Bol. Soc. Math. Mex. 5, 102–119 (1960)

    MathSciNet  Google Scholar 

  82. Kendra, S.J., Cinar, A.: Controller performance assessment by frequency domain techniques. J. Process Control 7(3), 181–194 (1997)

    Article  Google Scholar 

  83. Khamseh, S.A., Sedigh, A.K., Moshiri, B., Fatehi, A.: Control performance assessment based on sensor fusion techniques. Control Eng. Pract. 49, 14–28 (2016)

    Article  Google Scholar 

  84. Khan, M., Tahiyat, M., Imtiaz, S., Choudhury, M.A.A.S., Khan, F.: Experimental evaluation of control performance of MPC as a regulatory controller. ISA Trans. 70, 512–520 (2017)

    Article  Google Scholar 

  85. Kinoshita, T., Ohnishi, Y., Yamamoto, T., Shah, S.L.: Design of a performance-driven control system based on the control assessment. In: 44th Annual Conference of the IEEE Industrial Electronics Society, IECON 2018, pp. 5383–5388 (2018)

    Google Scholar 

  86. Knierim-Dietz, N., Hanel, L., Lehner, J.: Definition and verification of the control loop performance for different power plant types. Institute of Combustion and Power Plant Technology, University of Stutgart, Technical report (2012)

    Google Scholar 

  87. Ko, B.S., Edgar, T.F.: Performance assessment of cascade control loops. AIChE J. 46(2), 281–291 (2000)

    Article  Google Scholar 

  88. Ko, B.S., Edgar, T.F.: PID control performance assessment: the single-loop case. AIChE J. 50(6), 1211–1218 (2004)

    Article  Google Scholar 

  89. Laing, D., Uduehi, D., Ordys, A.: Financial benefits of advanced control. Benchmarking and optimization of a crude oil production platform. In: Proceedings of American Control Conference, vol. 6, pp. 4330–4331 (2001)

    Google Scholar 

  90. Lee, K.H., Huang, B., Tamayo, E.C.: Sensitivity analysis for selective constraint and variability tuning in performance assessment of industrial MPC. Control Eng. Pract. 16(10), 1195–1215 (2008a)

    Article  Google Scholar 

  91. Lee, K.H., Xu, F., Huang, B., Tamayo, E.C.: Controller performance analysis technology for industry: implementation and case studies. IFAC Proc. Vol. 41(2), 14912–14919 (2008b). 17th IFAC World Congress

    Article  Google Scholar 

  92. Li, X., Wang, J., Huang, B., Lu, S.: The DCT-based oscillation detection method for a single time series. J. Process Control 20(5), 609–617 (2010)

    Article  Google Scholar 

  93. Li, Y., O’Neill, Z.: Evaluating control performance on building HVAC controllers. In: International Building Performance Simulation Association, pp. 962–967, Hyderabad, India (2015)

    Google Scholar 

  94. Li, Z., Evans, R.J.: Minimum-variance control of linear time-varying systems. Automatica 33(8), 1531–1537 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  95. Liu, M.C.P., Wang, X., Wang, Z.L.: Performance assessment of control loop with multiple time-variant disturbances based on multi-model mixing time-variant minimum variance control. In: Proceeding of the 11th World Congress on Intelligent Control and Automation, pp. 4755–4759 (2014)

    Google Scholar 

  96. Lopez, A., Murrill, P., Smith, C.: Controller tuning relationships based on integral performance criteria. Instrum. Technol. 14(12), 57–62 (1967)

    Google Scholar 

  97. Loquasto, F., Seborg, D.E.: Monitoring model predictive control systems using pattern classification and neural networks. Ind. Eng. Chem. Res. 42(20), 4689–4701 (2003)

    Article  Google Scholar 

  98. Lynch, C.B., Dumont, G.A.: Control loop performance monitoring. In: Proceedings of IEEE International Conference on Control and Applications, vol. 2, pp. 835–840 (1993)

    Google Scholar 

  99. Lynch, C.B., Dumont, G.A.: Control loop performance monitoring. IEEE Trans. Control Syst. Technol. 4(2), 185–192 (1996)

    Article  Google Scholar 

  100. Maboodi, M., Khaki-Sedigh, A., Camacho, E.F.: Control performance assessment for a class of nonlinear systems using second-order volterra series models based on nonlinear generalised minimum variance control. Int. J. Control 88(8), 1565–1575 (2015)

    Article  MATH  Google Scholar 

  101. Mäkelä, M., Manninen, V., Heiliö, M., Myller, T.: Performance assessment of automatic quality control in mill operations. In: 2006 Proceedings of Control Systems (2006)

    Google Scholar 

  102. Marlin, T.E., Perkins, J.D., Barton, G.W., Brisk, M.L.: Benefits from process control: results of a joint industry-university study. J. Process Control 1(2), 68–83 (1991)

    Article  Google Scholar 

  103. Mason, D.G., Edwards, N.D., Linkens, D.A., Reilly, C.S.: Performance assessment of a fuzzy controller for atracurium-induced neuromuscular block. Br. J. Anaesth. 7(3), 396–400 (1996)

    Article  Google Scholar 

  104. Meng, Q.W., Fang, F., Liu, J.Z.: Minimum-information-entropy-based control performance assessment. Entropy 15(3), 943–959 (2013a)

    Article  MathSciNet  Google Scholar 

  105. Meng, Q.W., Gu, J.Q., Zhong, Z.F., Ch, S., Niu, Y.G.: Control performance assessment and improvement with a new performance index. In: 2013 25th Chinese Control and Decision Conference (CCDC), pp. 4081–4084 (2013b)

    Google Scholar 

  106. Micic, A.D., Matausek, M.R.: Closed-loop PID controller design and performance assessment in the presence of measurement noise. Chem. Eng. Res. Design 104(Supplement C), 513–518 (2015)

    Article  Google Scholar 

  107. Mitchell, W., Shook, D., Shah, S.L.: A picture worth a thousand control loops: an innovative way of visualizing controller performance data. Invited Plenary Presentation, Control Systems (2004)

    Google Scholar 

  108. Moridi, A., Armaghan, S., Sedigh, A.K., Choobkar, S.: Design of switching control systems using control performance assessment index. In: 2011 Proceedings of the World Congress on Engineering, vol. II, pp. 186–195 (2011)

    Google Scholar 

  109. Naujoks, F., Wiedemann, K., Schőmig, N., Jarosch, O., Gold, C.: Expert-based controllability assessment of control transitions from automated to manual driving. MethodsX 5, 579–592 (2018)

    Article  Google Scholar 

  110. Nesic, Z., Dumont, G., Davies, M., Brewster, D.: CD control diagnostics using a wavelet toolbox. In: Proceedings CD Symposium, IMEKO, vol. XB, pp. 120–125 (1997)

    Google Scholar 

  111. Nissinen, A., Nuyan, S., Virtanen, P.: On-line performance monitoring in process analysis. In: 2006 Proceedings of Control Systems (2006)

    Google Scholar 

  112. O’Connor, N., O’Dwyer, A.: Control loop performance assessment: a classification of methods. In: Proceedings of the Irish Signals and Systems Conference, Queens University Belfast, pp. 530–535 (2002)

    Google Scholar 

  113. Ohtsu, K., Kitagawa, G.: Statistical analysis of the AR type ship’s autopilot system. J. Dyn. Syst. Meas. Control 106(3), 193–202 (1984)

    Article  Google Scholar 

  114. Olaleye, F., Huang, B., Tamayo, E.: Industrial applications of a feedback controller performance assessment of time-variant processes. Ind. Eng. Chem. Res. 43(2), 597–607 (2004)

    Article  Google Scholar 

  115. O’Neill, Z., Li, Y., Williams, K.: HVAC control loop performance assessment: a critical review (1587-rp). Sci. Technol. Built Environ. 23(4), 619–636 (2017)

    Article  Google Scholar 

  116. Perrier, M., Roche, A.A.: Towards mill-wide evaluation of control loop performance. In: Proceedings of the Control Systems, pp. 205–209 (1992)

    Google Scholar 

  117. Pillay, N., Govender, P.: A data driven approach to performance assessment of PID controllers for setpoint tracking. Proc. Eng. 69, 1130–1137 (2014)

    Article  Google Scholar 

  118. Pillay, N., Govender, P.: Multi-class SVMs for automatic performance classification of closed loop controllers. J. Control Eng. Appl. Inf. 19(3), 3–12 (2017)

    Google Scholar 

  119. Pour, N.D., Huang, B., Shah, S.: Performance assessment of advanced supervisory-regulatory control systems with subspace LQG benchmark. Automatica 46(8), 1363–1368 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  120. Pryor, C.: Autocovariance and power spectrum analysis derive new information from process data. Control Eng. 2, 103–106 (1982)

    Google Scholar 

  121. Qin, S.J.: Control performance monitoring—a review and assessment. Comput. Chem. Eng. 23(2), 173–186 (1998)

    Google Scholar 

  122. Recalde, L.F., Yue, H.: Control performance monitoring of state-dependent nonlinear processes. IFAC-PapersOnLine 50(1), 11313–11318 (2017). 20th IFAC World Congress

    Google Scholar 

  123. Salsbury, T.I.: A practical method for assessing the performance of control loops subject to random load changes. J. Process Control 15(4), 393–405 (2005)

    Article  Google Scholar 

  124. Salsbury, T.I.: Continuous-time model identification for closed loop control performance assessment. Control Eng. Pract. 15(1), 109–121 (2007)

    Article  Google Scholar 

  125. Salsbury, T.I., Alcala, C.F.: Two new normalized EWMA-based indices for control loop performance assessment. In: 2015 American Control Conference (ACC), pp. 962–967 (2015)

    Google Scholar 

  126. Scali, C., Marchetti, E., Esposito, A.: Effect of cascade tuning on control loop performance assessment. In: IFAC Conference on Advances in PID Control PID’12 (2012)

    Article  Google Scholar 

  127. Schäfer, J., Cinar, A.: Multivariable MPC system performance assessment, monitoring, and diagnosis. J. Process Control 14(2), 113–129 (2004)

    Article  Google Scholar 

  128. Schlegel, M., Skarda, R., Cech, M.: Running discrete Fourier transform and its applications in control loop performance assessment. In: 2013 International Conference on Process Control (PC), pp. 113–118 (2013)

    Google Scholar 

  129. Seborg, D., Edgar, T.F., Mellichamp, D.: Process Dynamics & Control. Wiley, New York (2006)

    Google Scholar 

  130. Seem, J.E., House, J.M.: Integrated control and fault detection of air-handling units. HVAC & R Res. 15(1), 25–55 (2009)

    Article  Google Scholar 

  131. Sendjaja, A.Y., Kariwala, V.: Achievable PID performance using sums of squares programming. J. Process Control 19(6), 1061–1065 (2009)

    Article  Google Scholar 

  132. Seppala, C.T.: Dynamic analysis of variance methods for monitoring control system performance. Ph.D. thesis, Queen’s University Kingston, Ontario, Canada (1999)

    Google Scholar 

  133. Shah, S.L., Patwardhan, R., Huang, B.: Multivariate controller performance analysis: methods, applications and challenges. In: Proceedings of the Sixth International Conference on Chemical Process Control, pp. 199–207 (2001)

    Google Scholar 

  134. Shang, C., Huang, B., Yang, F., Huang, D.: Slow feature analysis for monitoring and diagnosis of control performance. J. Process Control 39, 21–34 (2016)

    Article  Google Scholar 

  135. Shang, L., Tian, X., Cai, L.: A multi-index control performance assessment method based on historical prediction error covariance. IFAC-PapersOnLine 50(1), 13892–13897 (2017). 20th IFAC World Congress

    Article  Google Scholar 

  136. Shardt, Y., Zhao, Y., Qi, F., Lee, K., Yu, X., Huang, B., Shah, S.: Determining the state of a process control system: current trends and future challenges. Can. J. Chem. Eng. 90(2), 217–245 (2012)

    Article  Google Scholar 

  137. Shinskey, F.G.: How good are our controllers in absolute performance and robustness? Meas. Control 23(4), 114–121 (1990)

    Article  Google Scholar 

  138. Skarda, R., Cech, M., Schlegel, M.: Simultaneous control loop performance assessment and process identification based on fractional models. IFAC—PapersOnLine 48(8), 859–864 (2015). 9th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM 2015

    Article  Google Scholar 

  139. Smuts, J.F., Hussey, A.: Requirements for successfully implementing and sustaining advanced control applications. In: Proceedings of the 54th ISA POWID Symposium, pp. 89–105 (2011)

    Google Scholar 

  140. Sotomayor, O.A.Z., Odloak, D.: Performance assessment of model predictive control systems. IFAC Proc. Vol. 39(2), 875–880 (2006). 6th IFAC Symposium on Advanced Control of Chemical Processes

    Google Scholar 

  141. Spinner, T.: Performance assessment of multivariate control systems. Ph.D. thesis, Texas Tech University (2014)

    Google Scholar 

  142. Spinner, T., Srinivasan, B., Rengaswamy, R.: Data-based automated diagnosis and iterative retuning of proportional-integral (PI) controllers. Control Eng. Pract. 29, 23–41 (2014)

    Article  Google Scholar 

  143. Srinivasan, B., Rengaswamy, R.: Automatic oscillation detection and characterization in closed-loop systems. Control Eng. Pract. 20(8), 733–746 (2012)

    Article  Google Scholar 

  144. Srinivasan, B., Spinner, T., Rengaswamy, R.: Control loop performance assessment using detrended fluctuation analysis (DFA). Automatica 48(7), 1359–1363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  145. Srinivasan, B., Spinner, T., Rengaswamy, R.: A reliability measure for model based stiction detection approaches. IFAC Proc. Vol. 45(15), 750–755 (2012b). 8th IFAC Symposium on Advanced Control of Chemical Processes

    Google Scholar 

  146. Srinivasan, B., Nallasivam, U., Rengaswamy, R.: An integrated approach for oscillation diagnosis in linear closed loop systems. Chem. Eng. Res. Design 93, 483–495 (2015)

    Article  Google Scholar 

  147. Srinivasan, R., Rengaswamy, R., Miller, R.: A modified empirical mode decomposition (EMD) process for oscillation characterization in control loops. Control Eng. Pract. 15(9), 1135–1148 (2007)

    Article  Google Scholar 

  148. Stanfelj, N., Marlin, T.E., MacGregor, J.F.: Monitoring and diagnosing process control performance: the single-loop case. Ind. Eng. Chem. Res. 32(2), 301–314 (1993)

    Article  Google Scholar 

  149. Starr, K.D., Petersen, H., Bauer, M.: Control loop performance monitoring—experience over two decades. IFAC-PapersOnLine 49(7), 526–532 (2016). 11th IFAC Symposium on Dynamics and Control of Process SystemsIncluding Biosystems DYCOPS-CAB 2016 (2016)

    Google Scholar 

  150. Stockmann, M., Habera, R., Schmitz, U.: Pattern recognition for valve stiction detection with principal component analysis. IFAC Proc. Vol. 42(8), 1438–1443 (2009). 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes

    Google Scholar 

  151. Su, A.J., Yu, C.C., Ogunnaike, B.A.: On the interaction between measurement strategy and control performance in semiconductor manufacturing. J. Process Control 18(3):266–276 (2008). Festschrift honouring Professor Dale Seborg

    Article  Google Scholar 

  152. Sun, Z., Qin, S.J., Singhal, A., Megan, L.: Performance monitoring of model-predictive controllers via model residual assessment. J. Process Control 23(4), 473–482 (2013)

    Article  Google Scholar 

  153. Tangirala, A.K., Shah, S.L., Thornhill, N.F.: PSCMAP: a new tool for plant-wide oscillation detection. J. Process Control 15(8), 931–941 (2005)

    Article  Google Scholar 

  154. Tepljakov, A., Petlenkov, E., Belikov, J.: A flexible MATLAB tool for optimal fractional-order PID controller design subject to specifications. In: 2012 31st Chinese Control Conference (CCC) (2012)

    Google Scholar 

  155. Thornhill, N.F., Hägglund, T.: Detection and diagnosis of oscillation in control loops. Control Eng. Pract. 5(10), 1343–1354 (1997)

    Article  Google Scholar 

  156. Thornhill, N.F., Shah, S.L., Huang, B., Vishnubhotla, A.: Spectral principal component analysis of dynamic process data. Control Eng. Pract. 10(8), 833–846 (2002)

    Article  Google Scholar 

  157. Thornhill, N.F., Huang, B., Shah, S.L.: Controller performance assessment in set point tracking and regulatory control. Int. J. Adap. Control Sig. Process. 17(7–9), 709–727 (2003a)

    Article  MATH  Google Scholar 

  158. Thornhill, N.F., Huang, B., Zhang, H.: Detection of multiple oscillations in control loops. J. Process Control 13(1), 91–100 (2003b)

    Article  Google Scholar 

  159. Tolfo, F.: A methodology to assess the economic returns of advanced control projects. In: 1983 American Control Conference, pp. 1141–1146. IEEE (1983)

    Google Scholar 

  160. Torres, B.S., de Carvalho, F.B., de Oliveira Fonseca, M., Filho, C.S.: Performance assessment of control loops - case studies. In: IFAC ADCHEM Conference (2006)

    Google Scholar 

  161. Tulsyan, A., Huang, B., Gopaluni, R.B., Forbes, J.F.: Performance assessment, diagnosis, and optimal selection of non-linear state filters. J. Process Control 24(2), 460–478 (2014). ADCHEM 2012 Special Issue

    Article  Google Scholar 

  162. Tyler, M.L., Morari, M.: Performance assessment for unstable and nonminimum-phase systems. IFAC Proc. Vol. 28(12), 187–192 (1995)

    Article  Google Scholar 

  163. Tyler, M.L., Morari, M.: Performance monitoring of control systems using likelihood methods. Automatica 32(8), 1145–1162 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  164. Ulaganathan, N., Rengaswamy, R.: Blind identification of stiction in nonlinear process control loops. In: 2008 American Control Conference, pp. 3380–3384 (2008)

    Google Scholar 

  165. Kumar, V., Rana, K.P., Gupta, V.: Real-time performance evaluation of a fuzzy PI + fuzzy PD controller for liquid-level process. Int. J. Innov. Res. Electric. Electron. Instrum. Control Eng. 13(2), 89–96 (2008)

    Google Scholar 

  166. Vatanski, N., Jämsä-Jounela, S.L., Rantala, A., Harju, T.: Control loop performance measures in the evaluation of process economics. In: 16th Triennial IFAC World Congress (2005)

    Article  Google Scholar 

  167. Veronesi, M., Visioli, A.: Performance assessment and retuning of PID controllers for load disturbance rejection. IFAC Proc. Vol. 45(3), 530–535 (2012). 2nd IFAC Conference on Advances in PID Control

    Article  Google Scholar 

  168. Veronesi, M., Visioli, A.: Process parameters estimation, performance assessment and controller retuning based on the final value theorem: Some extensions. IFAC-PapersOnLine 50(1), 9198–9203 (2017). 20th IFAC World Congress

    Article  Google Scholar 

  169. Vishnubhotla, A.: Frequency and time-domain techniques for control loop performance assessment. Ph.D. thesis, University of Alberta, Department of Chemical and Material Engineering, Canada (1997)

    Google Scholar 

  170. Visioli, A.: Method for proportional-integral controller tuning assessment. Ind. Eng. Chem. Res. 45(8), 2741–2747 (2006)

    Article  Google Scholar 

  171. Wan, S., Huang, B.: Robust performance assessment of feedback control systems. Automatica 38(1), 33–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  172. Wang, J., Huang, B., Lu, S.: Improved DCT-based method for online detection of oscillations in univariate time series. Control Eng. Pract. 21(5), 622–630 (2013)

    Article  Google Scholar 

  173. Wei, D., Craig, I.: Development of performance functions for economic performance assessment of process control systems. In: 9th IEEE AFRICON, pp. 1–6 (2009)

    Google Scholar 

  174. Wei, S., Cheng, J., Wang, Y.: Data-driven two-dimensional LQG benchmark based performance assessment for batch processes under ILC. IFAC-PapersOnLine 48(8), 291–296 (2015). 9th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM 2015

    Google Scholar 

  175. Wei, W., Zhuo, H.: Research of performance assessment and monitoring for multivariate model predictive control system. In: 2009 4th International Conference on Computer Science Education, pp. 509–514 (2009)

    Google Scholar 

  176. Wu, Z., Ran, Z., Xu, Q., Wang, W.: Dynamic performance monitoring of current control system for fused magnesium furnace driven by big data. In: 2018 IEEE International Conference on Consumer Electronics-Taiwan, pp. 1–2 (2018)

    Google Scholar 

  177. Xia, C., Howell, J., Thornhill, N.F.: Detecting and isolating multiple plant-wide oscillations via spectral independent component analysis. Automatica 41(12), 2067–2075 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  178. Xie, L., Lang, X., Horch, A., Yang, Y.: Online oscillation detection in the presence of signal intermittency. Control Eng. Pract. 55, 91–100 (2016)

    Article  Google Scholar 

  179. Xu, F., Huang, B., Tamayo, E.C.: Assessment of economic performance of model predictive control through variance/constraint tuning. IFAC Proc. Vol. 39(2), 899–904 (2006). 6th IFAC Symposium on Advanced Control of Chemical Processes

    Google Scholar 

  180. Xu, F., Huang, B., Akande, S.: Performance assessment of model pedictive control for variability and constraint tuning. Ind. Eng. Chem. Res. 46(4), 1208–1219 (2007)

    Article  Google Scholar 

  181. Yan, Z., Chen, J., Zhang, Z.: Using hidden markov model to identify oscillation temporal pattern for control loops. Chem. Eng. Res. Design 119, 117–129 (2017)

    Article  Google Scholar 

  182. Yang, S.H., Dai, C., Knott, R.P.: Remote maintenance of control system performance over the Internet. Control Eng. Pract. 15(5), 533–544 (2007)

    Article  Google Scholar 

  183. You, H., Zhou, J., Zhu, H., Li, D.: Performance assessment based on minimum entropy of feedback control loops. In: 2017 6th Data Driven Control and Learning Systems (DDCLS), pp. 593–598 (2017)

    Google Scholar 

  184. Yu, J., Qin, S.J.: Statistical MIMO controller performance monitoring. Part II: Performance diagnosis. J. Process Control 18(3–4), 297–319 (2008)

    Article  Google Scholar 

  185. Yu, W., Wilson, D.I., Young, B.R.: Eliminating valve stiction nonlinearities for control performance assessment. IFAC Proc. Vol. 42(11), 506–511 (2009). 7th IFAC Symposium on Advanced Control of Chemical Processes

    Google Scholar 

  186. Yu, W., Wilson, D., Young, B.: Control performance assessment for block-oriented nonlinear systems. In: IEEE ICCA 2010, pp. 1151–1156 (2010a)

    Google Scholar 

  187. Yu, W., Wilson, D.I., Young, B.R.: Nonlinear control performance assessment in the presence of valve stiction. J. Process Control 20(6), 754–761 (2010b)

    Article  Google Scholar 

  188. Yu, W., Wilson, D.I., Young, B.R.: A comparison of nonlinear control performance assessment techniques for nonlinear processes. Can. J. Chem. Eng. 90(6), 1442–1449 (2012a)

    Article  Google Scholar 

  189. Yu, W., Wilson, D.I., Young, B.R.: Control performance assessment in the presence of sampling jitter. Chem. Eng. Res. Design Trans. Inst. Chem. Eng. Part A 90(1), 129–137 (2012b)

    Article  Google Scholar 

  190. Yu, Z., Wang, J.: Performance assessment of static lead-lag feedforward controllers for disturbance rejection in PID control loops. ISA Trans. 64, 67–76 (2016)

    Article  Google Scholar 

  191. Yu, Z., Wang, J., Huang, B., Bi, Z.: Performance assessment of PID control loops subject to setpoint changes. J. Process Control 21(8), 1164–1171 (2011)

    Article  Google Scholar 

  192. Yuan, H.: Process analysis and performance assessment for sheet forming processes. Ph.D. thesis, Queen’s University, Kingston, Ontario, Canada (2015)

    Google Scholar 

  193. Zabiri, H., Ramasamy, M.: NLPCA as a diagnostic tool for control valve stiction. J. Process Control 19(8), 1368–1376 (2009). Special Section on Hybrid Systems: Modeling, Simulation and Optimization

    Article  Google Scholar 

  194. Zhang, J., Jiang, M., Chen, J.: Minimum entropy-based performance assessment of feedback control loops subjected to non-Gaussian disturbances. J. Process Control 24(11), 1660–1670 (2015a)

    Article  Google Scholar 

  195. Zhang, J., Zhang, L., Chen, J., Xu, J., Li, K.: Performance assessment of cascade control loops with non-Gaussian disturbances using entropy information. Chem. Eng. Res. Design 104, 68–80 (2015b)

    Article  Google Scholar 

  196. Zhang, K., Huang, B., Ji, G.: Multiple oscillations detection in control loops by using the DFT and Raleigh distribution. IFAC-PapersOnLine 48(21), 529–534 (2015c). 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2015

    Google Scholar 

  197. Zhang, Y., Henson, M.A.: A performance measure for constrained model predictive controllers. In: Proceedings of the 1999 European Control Conference, pp. 918–923 (1999)

    Google Scholar 

  198. Zhao, C., Huang, B.: Control performance monitoring with temporal features and dissimilarity analysis for nonstationary dynamic processes. IFAC-PapersOnLine 51(18), 357–362 (2018). 10th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM 2018

    Article  Google Scholar 

  199. Zhao, C., Su, H., Gu, Y., Chu, J.: A pragmatic approach for assessing the economic performance of model predictive control systems and its industrial application. Chin. J. Chem. Eng. 17(2), 241–250 (2009a)

    Article  Google Scholar 

  200. Zhao, C., Zhao, Y., Su, H., Huang, B.: Economic performance assessment of advanced process control with LQG benchmarking. J. Process Control 19(4), 557–569 (2009b)

    Article  Google Scholar 

  201. Zhao, C., Xu, Q., Zhang, D., An, A.: Economic performance assessment of process control: a probability optimization approach. In: International Symposium on Advanced Control of Industrial Processes, pp. 585–590 (2011)

    Google Scholar 

  202. Zhao, Y., Xie, W., Tu, X.: Performance-based parameter tuning method of model-driven PID control systems. ISA Trans. 51(3), 393–399 (2012)

    Article  Google Scholar 

  203. Zheng, B.: Analysis and auto-tuning of supply air temperature PI control in hot water heating systems. Ph.D. thesis, Dissertation of University of Nebraska (2007)

    Google Scholar 

  204. Zhong, L.: Defect distribution model validation and effective process control. In: Proceedings of the SPIE, vol. 5041, pp. 5041–5048 (2003)

    Google Scholar 

  205. Zhou, J.L., Wang, X., Zhang, J.F., Wang, H., Yang, G.H.: A new measure of uncertainty and the control loop performance assessment for output stochastic distribution systems. IEEE Trans. Autom. Control 60(9), 2524–2529 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  206. Zhou, Q., Liu, M.: An on-line self-tuning algorithm of pi controller for the heating and cooling coil in buildings. In: Proceedings of the 11th Symposium on Improving Building Systems in Hot and Humid Climates, Fort Worth, TX (1998)

    Google Scholar 

  207. Zhou, Y., Wan, F.: A neural network approach to control performance assessment. Int. J. Intell. Comput. Cybern. 1(4), 617–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł D. Domański .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domański, P.D. (2020). Does Control Quality Matter?. In: Control Performance Assessment: Theoretical Analyses and Industrial Practice. Studies in Systems, Decision and Control, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-030-23593-2_1

Download citation

Publish with us

Policies and ethics