Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 245))

  • 810 Accesses

Abstract

The measures summarized in the previous sections are defined in time domain. They use loop time series data and do not require any a priori knowledge about the loop or background process. They are fully data-driven. They all share the similar shortcut. None of them offers any distance from the measured index value to the optimal one. Thus, apart from the actual measured index value \(J_{act}\) one would require to estimate the lowest (the best achievable) limit of performance index \(J_{opt}\). It is clear that such an estimation requires more knowledge on the process and this set of the approaches is named model-driven.

Can we make a mechanical model of it?

–Lord Kelvin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer, M., Horch, A., Xie, L., Jelali, M., Thornhill, N.: The current state of control loop performance monitoring—a survey of application in industry. J. Process Control 38, 1–10 (2016)

    Article  Google Scholar 

  2. Bezergianni, S., Georgakis, C.: Controller performance assessment based on minimum and open-loop output variance. Control Eng. Pract. 8(7), 791–797 (2000)

    Article  Google Scholar 

  3. Bialic, G.: Methods of control performance assessment for sampld data systems working under stationary stoachastics disturbances. Ph.D. thesis, Dissertation of Technical University of Opole, Poland (2006)

    Google Scholar 

  4. Bialic, G., Błachuta, M.J.: Performance assessment of control loops with PID controllers based on correlation and spectral analysis. In: Proceedings of the 12th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR’2006 (2006)

    Google Scholar 

  5. Björklund, S.: A survey and comparison of time-delay estimation methods in linear systems. Tech. Rep. Linköping Studies in Science and Technology, Thesis No. 1061, Linköping Universitet, Department of Electrical Engineering, Division of Automatic Control, Sweden (2003)

    Google Scholar 

  6. Bombois, X., Potters, M., Mesbah, A.: Closed-loop performance diagnosis for model predictive control systems. In: 2014 European Control Conference (ECC), pp. 264–269 (2014)

    Google Scholar 

  7. Cinar, A., Marlin, T.E., MacGregor, J.F.: Automated monitoring and assessment of controller performance. In: IFAC Proceedings, iFAC Symposium on On-line Fault Detection and Supervision in the Chemical Process Industries, Newark, Delaware, 22–24 April, vol. 24, no. 4, pp. 163–167 (1992)

    Article  Google Scholar 

  8. CPC: Univariate Controller Performance Assessment. University of Alberta, Computer Process Control Group, Limited Trial Version (2010)

    Google Scholar 

  9. Desborough, L., Harris, T.J.: Performance assessment measures for univariate feedback control. Can. J. Chem. Eng. 70(6), 1186–1197 (1992)

    Article  Google Scholar 

  10. Desborough, L., Harris, T.J.: Performance assessment measures for univariate feedforward/feedback control. Can. J. Chem. Eng. 71(4), 605–616 (1993)

    Article  Google Scholar 

  11. Eriksson, P.G., Isaksson, A.J.: Some aspects of control loop performance monitoring. In: 1994 Proceedings of IEEE International Conference on Control and Applications, vol. 2, pp. 1029–1034 (1994)

    Google Scholar 

  12. Farenzena, M.: Novel methodologies for assessment and diagnostics in control loop management. Ph.D. thesis, Dissertation of Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil (2008)

    Google Scholar 

  13. Frank, P.M.: Entwurf von Regelkreisen mit vorgeschriebenen Verhalten. Wissenschaft + Technik: Taschenausgaben, Braun (1974)

    Google Scholar 

  14. Gao, J., Patwardhan, R., Akamatsu, K., Hashimoto, Y., Emoto, G., Shah, S.L., Huang, B.: Performance evaluation of two industrial MPC controllers. Control Eng. Pract. 11(12), 1371–1387. In: 2002 IFAC World Congress (2003)

    Article  Google Scholar 

  15. Garcia, C.E., Morari, M.: Internal model control. A unifying review and some new results. Ind. Eng. Chem. Process Des. Dev. 21(2), 308–323 (1982)

    Article  Google Scholar 

  16. Gerry, J.P.: Real-time performance assessment. In: Liptak, B.G. (ed.) Instrument Engineers’ Handbook: Process Control and Optimization, vol. 2, 4th edn, pp. 311–317. CRC Press (2005)

    Google Scholar 

  17. Gomez, D., Moya, E.J., Baeyens, E.: Control performance assessment: a general survey. In: L F de Carvalho, A.P., Rodriguez-Gonzalez, S., De Paz Santana, J.F., Rodriguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence: 7th International Symposium, Springer, Berlin, Heidelberg, pp. 621–628 (2010)

    Google Scholar 

  18. Grimble, M., Majecki, P.: Weighting selection for controller benchmarking and tuning. Tech. Rep. PAM-12-TN-1-V1, Industrial Control Centre, University of Strathclyde, Glasgow, UK (2004)

    Google Scholar 

  19. Grimble, M.J.: Controller performance benchmarking and tuning using generalised minimum variance control. Automatica 38(12), 2111–2119 (2002)

    Article  MathSciNet  Google Scholar 

  20. Grimble, M.J.: Restricted structure control loop performance assessment for PID controllers and state-space systems. Asian J. Control 5(1), 39–57 (2003)

    Article  Google Scholar 

  21. Grimble, M.J.: Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems. Wiley (2006)

    Google Scholar 

  22. Grimble, M.J., Uduehi, D.: Process control loop benchmarking and revenue optimization. In: Proceedings of the 2001 American Control Conference, vol. 6, pp. 4313–4327 (2001)

    Google Scholar 

  23. Gupta, A., Mathur, T., Stadler, K.S., Gallestey, E.: A pragmatic approach for performance assessment of advanced process control. In: 2013 IEEE International Conference on Control Applications (CCA), pp. 754–759 (2013)

    Google Scholar 

  24. Harris, T.J.: Assessment of closed loop performance. Can. J. Chem. Eng. 67, 856–861 (1989)

    Article  Google Scholar 

  25. Harris, T.J., Yu, W.: Controller assessment for a class of non-linear systems. J. Process Control 17(7), 607–619 (2007)

    Article  Google Scholar 

  26. Hoo, K.A., Piovoso, M.J., Schnelle, P.D., Rowan, D.A.: Process and controller performance monitoring: overview with industrial applications. Int. J. Adapt. Control Signal Process. 17(7–9), 635–662 (2003)

    Article  Google Scholar 

  27. Horch, A., Isaksson, A.J.: A modified index for control performance assessment. In: Proceedings of the 1998 American Control Conference, vol. 6, pp. 3430–3434 (1998)

    Google Scholar 

  28. Horch, A., Isaksson, A.J.: A modified index for control performance assessment. J. Process Control 9(6), 475–483 (1999)

    Article  Google Scholar 

  29. Huang, B., Shah, S.L.: Limits of control loop performance: practical measures of control loop performance assessment. In: AlChE Annual Meeting (1996)

    Google Scholar 

  30. Huang, B., Shah, S.L.: Performance Assessment of Control Loops: Theory and Applications, 1st edn. Springer, Berlin (1999)

    Book  Google Scholar 

  31. Huang, B., Shah, S.L., Kwok, E.K.: On-line control performance monitoring of MIMO processes. In: Proceedings of the 1995 American Control Conference, vol. 2, pp. 1250–1254 (1995)

    Google Scholar 

  32. Huang, H.P., Jeng, J.C.: Monitoring and assessment of control performance for single loop systems. Ind. Eng. Chem. Res. 41(5), 1297–1309 (2002)

    Article  Google Scholar 

  33. Huang, Q., Zhang, Q.: Research on multivariable control performance assessment techniques. In: 2011 International Symposium on Advanced Control of Industrial Processes (ADCONIP), IEEE, pp. 508–511 (2011)

    Google Scholar 

  34. Jain, M., Lakshminarayanan, S.: A filter-based approach for performance assessment and enhancement of SISO control systems. Ind. Eng. Chem. Res. 44(22), 8260–8276 (2005)

    Article  Google Scholar 

  35. Jelali, M.: An overview of control performance assessment technology and industrial applications. Control Eng. Pract. 14(5), 441–466 (2006)

    Article  Google Scholar 

  36. Jelali, M.: Control Performance Management in Industrial Automation: Assessment, Diagnosis and Improvement of Control Loop Performance. Springer, Berlin (2013)

    Chapter  Google Scholar 

  37. Kadali, R., Huang, B.: Controller performance analysis with LQG benchmark obtained under closed loop conditions. ISA Trans. 41(4), 521–537 (2002)

    Article  Google Scholar 

  38. Ko, B.S., Edgar, T.F.: Performance assessment of cascade control loops. AIChE J. 46(2), 281–291 (2000)

    Article  Google Scholar 

  39. Ko, B.S., Edgar, T.F.: Performance assessment of constrained model predictive control systems. AIChE J. 47(6), 1363–1371 (2001)

    Article  Google Scholar 

  40. Ko, B.S., Edgar, T.F.: PID control performance assessment: the single-loop case. AIChE J. 50(6), 1211–1218 (2004)

    Article  Google Scholar 

  41. Kozub, D.J.: Controller performance monitoring and diagnosis. Industrial perspective. In: IFAC Proceedings, 15th IFAC World Congress, vol. 35, no. 1, pp. 405–410 (2002)

    Article  Google Scholar 

  42. Li, Q., Whiteley, J.R., Rhinehart, R.R.: A relative performance monitor for process controllers. Int. J. Adapt. Control Signal Process. 17(7–9), 685–708 (2003)

    Article  Google Scholar 

  43. Li, Q., Whiteley, J.R., Rhinehart, R.R.: An automated performance monitor for process controllers. Control Eng. Pract. 12(5), 537–553, Fuzzy System Applications in Control (2004)

    Article  Google Scholar 

  44. Liu, M.C.P., Wang, X., Wang, Z.L.: Performance assessment of control loop with multiple time-variant disturbances based on multi-model mixing time-variant minimum variance control. In: Proceeding of the 11th World Congress on Intelligent Control and Automation, pp. 4755–4759 (2014)

    Google Scholar 

  45. Maboodi, M., Khaki-Sedigh, A., Camacho, E.F.: Control performance assessment for a class of nonlinear systems using second-order volterra series models based on nonlinear generalised minimum variance control. Int. J. Control 88(8), 1565–1575 (2015)

    Article  Google Scholar 

  46. Meng, Q.W., Gu, J.Q., Zhong, Z.F., Ch, S., Niu, Y.G.: Control performance assessment and improvement with a new performance index. In: 2013 25th Chinese Control and Decision Conference (CCDC), pp. 4081–4084 (2013)

    Google Scholar 

  47. Ordys, A., Uduehi, D., Johnson, M.A.: Process Control Performance Assessment—From Theory to Implementation. Springer, Berlin (2007)

    Google Scholar 

  48. Perrier, M., Roche, A.A.: Towards mill-wide evaluation of control loop performance. In: Proceedings of the Control Systems, pp. 205–209 (1992)

    Google Scholar 

  49. Pour, N.D., Huang, B., Shah, S.: Performance assessment of advanced supervisory-regulatory control systems with subspace LQG benchmark. Automatica 46(8), 1363–1368 (2010)

    Article  MathSciNet  Google Scholar 

  50. Recalde, L.F., Katebi, R., Tauro, H.: PID based control performance assessment for rolling mills: a multiscale PCA approach. In: 2013 IEEE International Conference on Control Applications (CCA), pp. 1075–1080 (2013)

    Google Scholar 

  51. Salsbury, T.I.: Continuous-time model identification for closed loop control performance assessment. Control Eng. Pract. 15(1), 109–121 (2007)

    Article  Google Scholar 

  52. Sarabi, B.K., Maghade, D.K., Malwatkar, G.M.: An empirical data driven based control loop performance assessment of multi-variate systems. In: 2012 Annual IEEE India Conference (INDICON), pp. 070–074 (2012)

    Google Scholar 

  53. Schlegel, M., Skarda, R., Cech, M.: Running discrete Fourier transform and its applications in control loop performance assessment. In: 2013 International Conference on Process Control (PC), pp. 113–118 (2013)

    Google Scholar 

  54. Sendjaja, A.Y., Kariwala, V.: Achievable PID performance using sums of squares programming. J. Process Control 19(6), 1061–1065 (2009)

    Article  Google Scholar 

  55. Shah, S.L., Patwardhan, R., Huang, B.: Multivariate controller performance analysis: methods, applications and challenges. In: Proceedings of the Sixth International Conference on Chemical Process Control, pp. 199–207 (2001)

    Google Scholar 

  56. Shahni, F., Malwatkar, G.M.: Assessment minimum output variance with PID controllers. J. Process Control 21(4), 678–681 (2011)

    Article  Google Scholar 

  57. Skarda, R., Cech, M., Schlegel, M.: Bode-like control loop performance index evaluated for a class of fractional-order processes. In: IFAC Proceedings, 19th IFAC World Congress, vol. 47, no. 3, pp. 10622–10627 (2014)

    Article  Google Scholar 

  58. Skarda, R., Cech, M., Schlegel, M.: Simultaneous control loop performance assessment and process identification based on fractional models. IFAC-PapersOnLine. In: 9th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM 2015, vol. 48, no. 8, pp. 859–864 (2015)

    Google Scholar 

  59. Souza, D.L., Oliveira-Lopes, L.C.: A novel controller performance index using a local process model factorization. J. Adv. Res. Dyn. Control Syst. 6(3), 8–23 (2014)

    MathSciNet  Google Scholar 

  60. Srinivasan, B., Spinner, T., Rengaswamy, R.: A reliability measure for model based stiction detection approaches. In: IFAC Proceedings, 8th IFAC Symposium on Advanced Control of Chemical Processes, vol. 45, no. 15, pp. 750–755 (2012)

    Article  Google Scholar 

  61. Starr, K.D., Petersen, H., Bauer, M.: Control loop performance monitoring—ABB’s experience over two decades. IFAC-PapersOnLine. In: 11th IFAC Symposium on Dynamics and Control of Process Systems Including Biosystems DYCOPS-CAB 2016, vol. 49, no. 7, pp. 526–532 (2016)

    Google Scholar 

  62. Sun, Z., Qin, S.J., Singhal, A., Megan, L.: Control performance monitoring via model residual assessment. In: 2012 American Control Conference (ACC), pp. 2800–2805 (2012)

    Google Scholar 

  63. Sun, Z., Qin, S.J., Singhal, A., Megan, L.: Performance monitoring of model-predictive controllers via model residual assessment. J. Process Control 23(4), 473–482 (2013)

    Article  Google Scholar 

  64. Thornhill, N.F., Oettinger, M., Fedenczuk, P.: Refinery-wide control loop performance assessment. J. Process Control 9(2), 109–124 (1999)

    Article  Google Scholar 

  65. Tyler, M.L., Morari, M.: Performance assessment for unstable and nonminimum-phase systems. IFAC Proceedings, vol. 28, no. 12, pp. 187–192 (1995)

    Article  Google Scholar 

  66. Vishnubhotla, A.: Frequency and time-domain techniques for control loop performance assessment. Ph.D. thesis, University of Alberta, Department of Chemicai and Materiah Engineering, Canada (1997)

    Google Scholar 

  67. Xu, F., Huang, B., Tamayo, E.C.: Assessment of economic performance of model predictive control through variance/constraint tuning. In: IFAC Proceedings, 6th IFAC Symposium on Advanced Control of Chemical Processes, vol. 39, no. 2, pp. 899–904 (2006)

    Article  Google Scholar 

  68. Yan, Z., Chen, J., Zhang, Z.: Using hidden markov model to identify oscillation temporal pattern for control loops. Chem. Eng. Res. Des. 119, 117–129 (2017)

    Article  Google Scholar 

  69. Yu, J., Qin, S.J.: MIMO control performance monitoring using left/right diagonal interactors. J. Process Control 19(8), 1267–1276, Special Section on Hybrid Systems: Modeling, Simulation and Optimization (2009)

    Article  Google Scholar 

  70. Yu, Z., Wang, J.: Assessment of proportional–integral control loop performance for input load disturbance rejection. Ind. Eng. Chem. Res. 51(36), 11744–11752 (2012)

    Article  Google Scholar 

  71. Yuan, Q., Lennox, B.: A new framework for controller performance assessment. In: 2007 IEEE International Conference on Control and Automation, pp. 2679–2684 (2007)

    Google Scholar 

  72. Yuan, Q., Lennox, B., McEwan, M.: Analysis of multivariable control performance assessment techniques. J. Process Control 19(5), 751–760 (2009)

    Article  Google Scholar 

  73. Zhang, R., Zhang, Q.: Model predictive control performance assessment using a prediction error benchmark. In: 2011 International Symposium on Advanced Control of Industrial Processes (ADCONIP), pp. 571–574 (2011)

    Google Scholar 

  74. Zhong, Z., Meng, Q., Liu, J.: Control system comprehensive performance assessment. In: Proceedings of the 33rd Chinese Control Conference, pp. 6268–6272 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł D. Domański .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domański, P.D. (2020). Model-Based Measures. In: Control Performance Assessment: Theoretical Analyses and Industrial Practice. Studies in Systems, Decision and Control, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-030-23593-2_5

Download citation

Publish with us

Policies and ethics