Skip to main content

Alternative Indexes

  • Chapter
  • First Online:
  • 806 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 245))

Abstract

Alternative indexes for the CPA task go beyond the classical and commonly used assessment methodologies. They try to address the practical aspects, which are frequently met in the process industry reality. Alternative indexes extend classical research. They try to capture nonlinearities, complexity, non-Gaussian properties, fat-tails, human impact and so on. Alternative non-Gaussian approaches, like persistence, fractal, multi-fractal, fractional order or entropy based indexes are still not well established. The following chapter brings them closer in details.

For a complex natural shape, dimension is relative. It varies with the observer. The same object can have more than one dimension, depending on how you measure it and what you want to do with it.

– Benoît B. Mandelbrot

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abry, P., Veitch, D.: Wavelet analysis of long-range-dependent traffic. IEEE Trans. Inf. Theory 44(1), 2–15 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barabási, A.L., Szépfalusy, P., Vicsek, T.: Multifractal spectra of multi-affine functions. Phys. A: Stat. Mech. Appl. 178(1), 17–28 (1991)

    Article  MathSciNet  Google Scholar 

  3. Bardet, J.M., Bertrand, P.: Identification of the multiscale fractional Brownian motion with biomechanical applications. J. Time Ser. Anal. 28(1), 1–52 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barunik, J., Aste, T., Di Matteo, T., Liu, R.: Understanding the source of multifractality in financial markets. Phys. A: Stat. Mech. Appl. 391(17), 4234–4251 (2012)

    Article  Google Scholar 

  5. Beran, J.: Statistics for Long-Memory Processes. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  6. Borak, S., Misiorek, A., Weron, R.: Models for heavy-tailed asset returns. In: Cizek, P., Härdle, K.W., Weron, R. (eds.) Statistical Tools for Finance and Insurance, 2nd edn, pp. 21–56. Springer, New York (2011)

    Chapter  Google Scholar 

  7. Chen, L.J., Zhang, J., Zhang, L.: Entropy information based assessment of cascade control loops. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, IMECS (2015)

    Google Scholar 

  8. Clegg, R.G.: A practical guide to measuring the Hurst parameter. Int. J. Simul.: Syst. Sci. Technol. 7(2), 3–14 (2006)

    Google Scholar 

  9. Das, L., Srinivasan, B., Rengaswamy, R.: Data driven approach for performance assessment of linear and nonlinear kalman filters. In: 2014 American Control Conference, pp. 4127–4132 (2014)

    Google Scholar 

  10. Das, L., Srinivasan, B., Rengaswamy, R.: Multivariate control loop performance assessment with Hurst exponent and mahalanobis distance. IEEE Trans. Control Syst. Technol. 24(3), 1067–1074 (2016a)

    Article  Google Scholar 

  11. Das, L., Srinivasan, B., Rengaswamy, R.: A novel framework for integrating data mining with control loop performance assessment. AIChE J. 62(1), 146–165 (2016b)

    Article  Google Scholar 

  12. Domański, P.D.: Non-gaussian properties of the real industrial control error in SISO loops. In: Proceedings of the 19th International Conference on System Theory, Control and Computing, pp. 877–882 (2015)

    Google Scholar 

  13. Domański, P.D.: Fractal measures in control performance assessment. In: Proceedings of IEEE International Conference on Methods and Models in Automation and Robotics MMAR, Miedzyzdroje, Poland, pp. 448–453 (2016a)

    Google Scholar 

  14. Domański, P.D.: Non-Gaussian and persistence measures for control loop quality assessment. Chaos: Interdiscip. J. Nonlinear Sci. 26(4), 043,105 (2016b)

    Article  MathSciNet  Google Scholar 

  15. Domański, P.D.: Multifractal properties of process control variables. Int. J. Bifurc. Chaos 27(6), 1750,094 (2017)

    Article  MathSciNet  Google Scholar 

  16. Domański, P.D.: Control quality assessment using fractal persistence measures. ISA Trans. 90, 226–234 (2019). https://doi.org/10.1016/j.isatra.2019.01.008

    Article  Google Scholar 

  17. Domański, P.D., Gintrowski, M.: Alternative approaches to the prediction of electricity prices. Int. J. Energy Sect. Manag. 11(1), 3–27 (2017)

    Article  Google Scholar 

  18. Domański, P.D., Ławryńczuk, M.: Assessment of predictive control performance using fractal measures. Nonlinear Dyn. 89, 773–790 (2017a)

    Article  Google Scholar 

  19. Domański, P.D., Ławryńczuk, M.: Assessment of the GPC control quality using non-Gaussian statistical measures. Int. J. Appl. Math. Comput. Sci. 27(2), 291–307 (2017b)

    Article  MathSciNet  MATH  Google Scholar 

  20. Domański, P.D., Ławryńczuk, M.: Control quality assessment of nonlinear model predictive control using fractal and entropy measures. In: Preprints of the First International Nonlinear Dynamics Conference NODYCON 2019, Rome, Italy (2019)

    Google Scholar 

  21. Domański, P.D., Golonka, S., Jankowski, R., Kalbarczyk, P., Moszowski, B.: Control rehabilitation impact on production efficiency of ammonia synthesis installation. Ind. Eng. Chem. Res. 55(39), 10,366–10,376 (2016)

    Article  Google Scholar 

  22. Feder, J.: Fractals. Springer Science & Business Media (2013)

    Google Scholar 

  23. Field, A.J., Harder, U., Harrison, P.G.: Measurement and modelling of self-similar traffic in computer networks. IEE Proc. Commun. 151(4), 355–363 (2004)

    Article  Google Scholar 

  24. Franzke, C.L.E., Graves, T., Watkins, N.W., Gramacy, R.B., Hughes, C.: Robustness of estimators of long-range dependence and self-similarity under non-Gaussianity. Philos. Trans. Royal Soc. A 370(1962), 1250–1267 (2012)

    Article  Google Scholar 

  25. Gao, J., Hu, J., Tung, W.: Entropy measures for biological signal analyses. Nonlinear Dyn. 68(3), 431–444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Geweke, J., Porter-Hudak, S.: The estimation and application of long memory time series models. J. Time Ser. Anal. 4, 221–238 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grahovac, D., Leonenko, N.N.: Detecting multifractal stochastic processes under heavy-tailed effects. Chaos Solitons Fractals 65, 78–89 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Green, E., Hanan, W., Heffernan, D.: The origins of multifractality in financial time series and the effect of extreme events. Eur. Phys. J. B 87(6), 1–9 (2014)

    Article  MathSciNet  Google Scholar 

  29. Grigolini, P., Palatella, L., Raffaelli, G.: Asymmetric anomalous diffusion: an efficient way to detect memory in time series. Fractals 9(4), 439–449 (2001)

    Article  Google Scholar 

  30. Habib, A., Sorensen, J.P.R., Bloomfield, J.P., Muchan, K., Newell, A.J., Butler, A.P.: Temporal scaling phenomena in groundwater-floodplain systems using robust detrended fluctuation analysis. J. Hydrol. 549, 715–730 (2017)

    Article  Google Scholar 

  31. Haslett, J., Raftery, A.E.: Space-time modelling with long-memory dependence: assessing ireland’s0 wind power resource. J. Appl. Stat. 38, 1–50 (1989)

    Article  Google Scholar 

  32. Hassler, U.: Regression of spectral estimators with fractionally integrated time series. J. Time Ser. Anal. 14(4), 369–380 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Phys. D: Nonlinear Phenom. 31(2), 277–283 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hurst, H.E., Black, R.P., Simaika, Y.M.: Long-Term Storage: An Experimental Study. Constable and Co Limited, London (1965)

    Google Scholar 

  35. Ihlen, E.A.F.: Introduction to multifractal detrended fluctuation analysis in Matlab. Front. Physiol. 3(141), 1–18 (2012)

    Google Scholar 

  36. Jaffard, S.: Multifractal formalism for functions. SIAM J. Math. Anal. 28, 944–970 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jaffard, S., Lashermes, B., Abry, P.: Wavelet leaders in multifractal analysis. In: Qian, T., Vai, M.I., Xu, Y. (Eds.), pp. 201–246. Wavelet analysis and applications, Birkhäuser Verlag (2007)

    Google Scholar 

  38. Jeong, H.D.J., McNiclke, D., Pawlikowski, K.: Hurst parameter estimation techniques: a critical review. In: 38th Annual ORSNZ Conference (2001)

    Google Scholar 

  39. Jia, Y., Zhou, J., Li, D.: Performance assessment of cascade control loops with non-Gaussian disturbances. In: 2018 Chinese Automation Congress, pp. 2451–2456 (2018)

    Google Scholar 

  40. Kantelhardt, J.W., Zschiegner, S.A., Stanley, H.E.: Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316, 87–114 (2002)

    Article  MATH  Google Scholar 

  41. Kaplan, L.M., Jay Kuo, C.C.: Fractal estimaton from noisy data via discrete fractional gaussian noise (DFGN) and the Haar basis. IEEE Trans. Signal Proccess. 41(12) (1993)

    Article  MATH  Google Scholar 

  42. Karagiannis, T., Faloutsos, M., Riedi, R.H.: Long-range dependence: now you see it, now you don’t! In: IEEE Global Telecommunications Conference GLOBECOM ’02 3 (2002)

    Google Scholar 

  43. Kavasseri, R.G., Nagarajan, R.: Evidence of crossover phenomena in wind-speed data. IEEE Trans. Circuits Syst. I: Regul. Papers 51(11), 2255–2262 (2004)

    Article  Google Scholar 

  44. Kavasseri, R.G., Nagarajan, R.: A multifractal description of wind speed records. Chaos Solitons Fractals 24(1), 165–173 (2005)

    Article  MATH  Google Scholar 

  45. Kenkel, N.C., Walker, D.J.: Fractals in the biological sciences. COENOSES 11, 77–100 (1996)

    Google Scholar 

  46. Kettani, H., Gubner, J.A.: A novel approach to the estimation of the long-range dependence parameter. IEEE Trans. Circuits Syst. 53(6), 463–467 (2006)

    Article  Google Scholar 

  47. Kirichenko, L., Radivilova, T., Deineko, Z.: Comparative analysis for estimating of the hurst exponent for stationary and nonstationary time series. J. Int. Inf. Technol. Knowl. 5, 371–387 (2011)

    Google Scholar 

  48. Koutsoyiannis, D.: Climate change, the hurst phenomenon, and hydrological statistics. Hydrol. Sci. J. 48(1), 3–24 (2003)

    Article  Google Scholar 

  49. Li, L., Li, Z., Zhang, Y., Chen, Y.: A mixed-fractal traffic flow model whose hurst exponent appears crossover. In: 2012 Fifth International Joint Conference on Computational Sciences and Optimization, pp. 443–447. IEEE (2012)

    Google Scholar 

  50. Li, M., Zhao, W., Cattani, C.: Delay bound: fractal traffic passes through network servers. Math. Problems Eng. (2013)

    Google Scholar 

  51. Li, Q., Mills, D.L.: Investigating the scaling behavior, crossover and anti-persistence of internet packet delay dynamics. In: Proceedings of the Seamless Interconnection for Universal Services Global Telecommunications Conference GLOBECOM’99 3 (1999)

    Google Scholar 

  52. Liu, K., Chen, Y.Q., Domański, P.D., Zhang, X.: A novel method for control performance assessment with fractional order signal processing and its application to semiconductor manufacturing. Algorithms 11(7), 90 (2018)

    Article  MathSciNet  Google Scholar 

  53. Liu, K., Chen, Y.Q., Domański, P.D.: Control performance assessment of the disturbance with fractional order dynamics. In: Preprints of the First International Nonlinear Dynamics Conference NODYCON 2019, Rome, Italy (2019)

    Google Scholar 

  54. Lopes, R., Betrouni, N.: Fractal and multifractal analysis: a review. Med. Image Anal. 13(4), 634–649 (2009)

    Article  Google Scholar 

  55. L’vov, V.S., Pomyalov, A., Procaccia, I.: Outliers, extreme events, and multiscaling. Phys. Rev. E 63(056), 118 (2001)

    Google Scholar 

  56. Majumder, B., Das, S., Pan, I., Saha, S., Das, S., Gupta, A.: Estimation, analysis and smoothing of self-similar network induced delays in feedback control of nuclear reactors. In: International Conference on Process Automation, Control and Computing (2011)

    Google Scholar 

  57. Mandelbrot, B.B.: Possible refinements of the lognormal hypothesis concerning the distribution of energy dissipation in intermitent turbulence. In: Rosenblatt, M., Van Atta, C. (Eds.) Statistical Models and Turbulence, Springer, New York (1972)

    Chapter  Google Scholar 

  58. Mandelbrot, B.B.: Les objets fractals: forme, hasard, et dimension. Flammarion (1975)

    Google Scholar 

  59. Mandelbrot, B.B., Hudson, R.L.: The Misbehavior of Markets: A Fractal View of Financial Turbulence. Basic Books, New York (2004)

    Google Scholar 

  60. Mandelbrot, B.B., Fisher, A., Calvet, L.: A multifractal model of asset returns. Technical Report 1164, Cowles Foundation Discussion Paper (1997)

    Google Scholar 

  61. Meng, Q.W., Fang, F., Liu, J.Z.: Minimum-information-entropy-based control performance assessment. Entropy 15(3), 943–959 (2013)

    Article  MathSciNet  Google Scholar 

  62. Movahed, M.S., Jafari, G.R., Ghasemi, F., Rahvar, S., Tabar, M.R.R.: Multifractal detrended fluctuation analysis of sunspot time series. J. Stat. Mech.: Theory Exp. 2006(02), 02,003 (2006)

    Article  MATH  Google Scholar 

  63. Muzy, J.F., Bacry, E., Arneodo, A.: Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 67(25), 3515–3518 (1991)

    Article  Google Scholar 

  64. Oh, G., Eom, C., Havlin, S., Jung, W.S., Wang, F., Stanley, H.E., Kim, S.: A multifractal analysis of asian foreign exchange markets. Eur. Phys. J. B 85(6), 1–6 (2012)

    Article  Google Scholar 

  65. Oświecimka, P., Kwapień, J., Drozdz, S., Rak, R.: Investigating multifractality of stock market fluctuations using wavelet and detrending fluctuation methods. Acta Phys. Polonica B 36(8), 2447 (2005)

    Google Scholar 

  66. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49(2), 1685–1689 (1994)

    Article  Google Scholar 

  67. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos (Woodbury, NY) 5(1), 82–87 (1995)

    Article  Google Scholar 

  68. Perkiömäki, J.S., Mäkikallio, T.H., Huikuri, H.V.: Fractal and complexity measures of heart rate variability. Clin. Exp. Hypertens. 27(2–3), 149–158 (2005)

    Article  Google Scholar 

  69. Peters, E.E.: Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility, 2nd edn. John Wiley & Sons Inc (1996)

    Google Scholar 

  70. Pillay, N., Govender, P.: A data driven approach to performance assessment of PID controllers for setpoint tracking. Procedia Eng. 69, 1130–1137 (2014)

    Article  Google Scholar 

  71. Russel, D., Hanson, J., Ott, E.: Dimension of strange attractors. Phys. Rev. Lett. 45(14), 1175–1178 (1980)

    Article  MathSciNet  Google Scholar 

  72. Schmitt, D.T., Ivanov, P.C.: Fractal scale-invariant and nonlinear properties of cardiac dynamics remain stable with advanced age: a new mechanistic picture of cardiac control in healthy elderly. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293(5), R1923–R1937 (2007)

    Article  Google Scholar 

  73. Schröder, M.: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. W. H. Freeman and Company, New York, NY (1991)

    Google Scholar 

  74. Schumann, A.Y., Kantelhardt, J.W.: Multifractal moving average analysis and test of multifractal model with tuned correlations. Phys. A: Stat. Mech. Appl. 390(14), 2637–2654 (2011)

    Article  Google Scholar 

  75. Serrano, E., Figliola, A.: Wavelet leaders: a new method to estimate the multifractal singularity spectra. Phys. A: Stat. Mech. Appl. 388(14), 2793–2805 (2009)

    Article  MathSciNet  Google Scholar 

  76. Sornette, D.: Dragon-kings, black swans and the prediction of crises. Int. J. Terraspace Sci. Eng. 2(1), 1–18 (2009)

    Google Scholar 

  77. Spinner, T.: Performance assessment of multivariate control systems. Ph.D. thesis, Texas Tech University (2014)

    Google Scholar 

  78. Spinner, T., Srinivasan, B., Rengaswamy, R.: Data-based automated diagnosis and iterative retuning of proportional-integral (PI) controllers. Control Eng. Pract. 29, 23–41 (2014)

    Article  Google Scholar 

  79. Srinivasan, B., Spinner, T., Rengaswamy, R.: Control loop performance assessment using detrended fluctuation analysis (DFA). Automatica 48(7), 1359–1363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  80. Taleb, N.N.: Fooled by Randomness: The Hidden Role of Chance in Life and in the Markets. Penguin Books, New York (2001)

    Google Scholar 

  81. Taqqu, M.S., Teverovsky, V.: On estimating the intensity of long-range dependence in finite and infinite variance time series. In: A Practical Guide To Heavy Tails: Statistical Techniques and Applications, pp. 177–217 (1996)

    Google Scholar 

  82. Taqqu, M.S., Teverovsky, V., Willinger, W.: Estimators for long-range dependence: an empirical study. Fractals 03(04), 785–798 (1995)

    Article  MATH  Google Scholar 

  83. Teverovsky, V., Taqqu, M.S.: Testing for long-range dependence in the presence of shifting means or a slowly declining trend using a variance type estimator. J. Time Ser. Anal. 18, 279–304 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  84. Tosatti, E., Pietrelli, L.: Fractals in physics. In: Proceedings of the Sixth Trieste International Symposium on Fractals in Physics, Italy, North Holland (1985)

    Google Scholar 

  85. Turcotte, D.L.: Fractals in Geology and Geophysics. In: Fractals in Geophysics, pp. 171–196. Springer (1989)

    Google Scholar 

  86. Weron, R.: Estimating long range dependence: finite sample properties and confidence intervals. Physica A 312, 285–299 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  87. Wu, Y., Li, J.: Hurst parameter estimation method based on haar wavelet and maximum likelihood estimation. J. Huazhong Normal Univ. 52(6), 763–775 (2013)

    MathSciNet  Google Scholar 

  88. You, H., Zhou, J., Zhu, H., Li, D.: Performance assessment based on minimum entropy of feedback control loops. In: 2017 6th Data Driven Control and Learning Systems (DDCLS), pp. 593–598 (2017)

    Google Scholar 

  89. Yue, H., Wang, H.: Minimum entropy control of closed-loop tracking errors for dynamic stochastic systems. IEEE Trans. Autom. Control 48(1), 118–122 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  90. Zhang, J., Jiang, M., Chen, J.: Minimum entropy-based performance assessment of feedback control loops subjected to non-Gaussian disturbances. J. Process Control 24(11), 1660–1670 (2015a)

    Article  Google Scholar 

  91. Zhang, J., Zhang, L., Chen, J., Xu, J., Li, K.: Performance assessment of cascade control loops with non-Gaussian disturbances using entropy information. Chem. Eng. Res. Design 104, 68–80 (2015b)

    Article  Google Scholar 

  92. Zhang, Q., Wang, Y., Lee, F., Chen, Q., Sun, Z.: Improved Renyi entropy benchmark for performance assessment of common cascade control system. IEEE Access 7, 6796–6803 (2019a)

    Article  Google Scholar 

  93. Zhang, Q., Wang, Y., Lee, F., Zhang, W., Chen, Q.: Performance assessment of cascade control system with non-Gaussian disturbance based on minimum entropy. Symmetry 11(3), 379 (2019b)

    Article  Google Scholar 

  94. Zhou, J., Jia, Y., Jiang, H., Fan, S.: Non-Gaussian systems control performance assessment based on rational entropy. Entropy 20(5), 331 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł D. Domański .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domański, P.D. (2020). Alternative Indexes. In: Control Performance Assessment: Theoretical Analyses and Industrial Practice. Studies in Systems, Decision and Control, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-030-23593-2_7

Download citation

Publish with us

Policies and ethics