Strategic Prospective: Definitions and Key Concepts

  • Raúl Trujillo-CabezasEmail author
  • José Luis Verdegay
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 387)


The prospective approach introduced the possibility of recognizing several possible states in the next time interval, because it does not reduce the dynamics of change to a simple rational choice, as is the case when reflections on the future focus only on the identification or extrapolation of trends. Thus, the prospective provides the basis for long-term reflection on the system being studied that give a multi-dimensional and multi-scale vision of it. There are a variety of available methods and techniques that have been developed to deal with long-term strategic reflections, which ability to decision-makers to make estimations of futures, identify future-bearing facts and to make inferences about the future. Therefore, this chapter hopes to help the reader identify the key definitions and concepts around the prospective approach, in addition to recognizing similarities and divergences with other approaches in the field of Future Studies.


  1. Bachelard, G. (1936). Dans Inquisitions, du surralisme au Front populaire. Facsimil la revue (1936) augm. . (s. l. documents indits, Ed.) Paris.Google Scholar
  2. Berger, G. (1958). Humanisme et technique. Revue de l’enseignement supérieur, 5–10.Google Scholar
  3. Blondel, M. (1893). L’action, essai d’une critique de la vie et d’une science de la pratique.Google Scholar
  4. Bourse, F. (15-16 de febrero de 2016). Pratiques professionnelles de la prospective/master class. Bogotá, Colombia.Google Scholar
  5. Briones, G. (2002). Metodología de la investigación cuantitativa en las ciencias sociales. Bogotá: ARFO Editores e Impresores Ltda.Google Scholar
  6. Bunge, M. (1993). Realism and antirealism in social science. Theory and Decision, 35(3), 207–235.CrossRefGoogle Scholar
  7. Chaitin, G. (1975). Randomness and mathematical proof. Scientific American, 232(5), 47–52.CrossRefGoogle Scholar
  8. Chaitin, G. (1977). Algorithmic information theory. IBM Journal of Research and Development, 21(4), 350–359.MathSciNetCrossRefGoogle Scholar
  9. De Jouvenel, B. (1967). arte della congettura. Florencia: Vallecchi Editore.Google Scholar
  10. De Menthiere Nicolas, L., & Audrey, B. (2016). Visions du futur et environnement. Les grandes familles de scénarios issues d’une analyse de prospectives internationales relatives à l’environnement. Volume 1: rapport final de l’étude ScénEnvi. AllEnvi: Alliance nationale de recherche pour l’environnement.Google Scholar
  11. Durance, P., & Godet, M. (2010). Scenario building: Uses and abuses. Technological Forecasting and Social Change, 77(9), 1488–1492.CrossRefGoogle Scholar
  12. Fuller, T., & Loogma, K. (2009). Constructing futures: A social constructionist perspective on foresight methodology. Futures, 41(2), 71–79.CrossRefGoogle Scholar
  13. Gibert-Galassi, J. (2014). Ontología social y el problema de los mecanismos. (E. R. filosofía, Ed.) Retrieved octubre 2, 2017, from Eikasia: Revista de filosofía:
  14. Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für mathematik und physik, 38(1), 173–198.MathSciNetCrossRefGoogle Scholar
  15. Godet, M. (1976). SMIC 74: A reply from the authors. Futures, 8(4), 336–340.CrossRefGoogle Scholar
  16. Godet, M. (1985). Prospective et planification stratégique. Paris: Editions CNAM.Google Scholar
  17. Godet, M. (1986). Introduction to la prospective: seven key ideas and one scenario method. Futures, 18(2), 134–157.CrossRefGoogle Scholar
  18. Godet, M., & Durance, P. (2011). La prospective stratégique-2e éd.: Pour les entreprises et les territoires. París: Dunod.Google Scholar
  19. Harper, J., Cuhls, K., Georghious, L., & Johnston, R. (2008). Future-oriented technology analysis as a driver of strategy and policy. Technology Analysis & Strategic Management, 20(3), 267–269.CrossRefGoogle Scholar
  20. Hazlitt, W. (1805). An essay on the principles of human action: Being an argument in favour of the natural disinterestedness of the human mind. J. Johnson.Google Scholar
  21. Jouvenel, H. (2004). Invitation à la prospective. Paris: Futuribles.Google Scholar
  22. Kuusi, O., Cuhls, K., & Steinmüller, K. (2015). The futures map and its quality criteria. European Journal of Futures Research, 3(1), 1–14.CrossRefGoogle Scholar
  23. Lorenz, E. (1976). Nondeterministic theories of climatic change. Quaternary Research, 6(4), 495–506.CrossRefGoogle Scholar
  24. Mainzer, K. (2002). The little book of time. Berlin: Springer Science and Business Media.Google Scholar
  25. Mandelbrot, B. (1967). How long is the coast of Britain. Science, 636–638.CrossRefGoogle Scholar
  26. Mandelbrot, B. (1977). Fractals. New York: Wiley.Google Scholar
  27. Mandelbrot, B., & Pignoni, R. (1983). The fractal geometry of nature (Vol. 173). New York: WH freeman.Google Scholar
  28. Mietzner, D., & Reger, G. (2005). Advantages and disadvantages of scenario approaches for strategic foresight. International Journal Technology Intelligence and Planning, 1(2), 220–239.CrossRefGoogle Scholar
  29. Poincaré, H. (1905). Science and hypothesis. Science Press.Google Scholar
  30. Popper, K. (1965). Of clouds and clocks; An approach to the problem of rationality and the freedom of man. Washington University.Google Scholar
  31. Popper, K. (1970). Normal science and its dangers (pp. 57–58). Cambridge: Cambridge University Press.Google Scholar
  32. Popper, K. (1979). Truth, rationality and the growth of scientific knowledge. Vittorio Klostermann.Google Scholar
  33. Prigogine, I. (1967). Introduction to thermodynamics of irreversible processes (3rd ed.). New York: Interscience.zbMATHGoogle Scholar
  34. Prigogine, I. (1980a). From being to becoming. New York: Freeman.Google Scholar
  35. Prigogine, I. (1980b). In F. b. becoming. New York: Freeman.Google Scholar
  36. Prigogine, I. (1993). Science, reason and passion. In M. B. E. (Ed.), Art and science: Studies from the world academy of art and science (p. 43). Budapest: World Futures.Google Scholar
  37. Prigogine, I., & Stengers, I. (1979). La nouvelle alliance: métamorphose de la science. Gallimard.Google Scholar
  38. Prigogine, I., & Stengers, I. (1984). Order out of Chaos. London: Heinemann.Google Scholar
  39. Rounsevell, M., & Metzger, M. (2010). Developing qualitative scenario storylines for environmental change assessment: Developing qualitative scenario storylines. Wiley Interdisciplinary Reviews: Climate Change, 1(4), 606–619.Google Scholar
  40. Shannon, C., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: EEUU.zbMATHGoogle Scholar
  41. Shannon, C., Weaver, W., & Burks, A. (1951). The mathematical theory of communication.Google Scholar
  42. Simon, H. (1996). The sciences of the artificial. Cambridge: MIT Press.Google Scholar
  43. Smale, S. (1967). Differentiable dynamical systems. Bulletin of the American Mathematical Society, 73(6), 747–817.MathSciNetCrossRefGoogle Scholar
  44. Suddendorf, T., & Corballis, M. (2007). The evolution of foresight: What is mental time travel, and is it unique to humans? Behavioral and Brain Sciences, 299–313.Google Scholar
  45. Thom, R. (1977). Structural stability, catastrophe theory, and applied mathematics. SIAM Review, 12(9), 189–201.MathSciNetCrossRefGoogle Scholar
  46. Thom, R. (1983). Mathematical models of morphogenesis. Ellis Horwood.Google Scholar
  47. Touraine, A. (2000). A method for studying social actors. Journal of World-Systems Research, 6(3), 900–918.CrossRefGoogle Scholar
  48. Turing, A. (1936). Proceedings of the London Mathematical Society, 42(1), 230–265.Google Scholar
  49. Turing, A. (1937). Computability and λ-definability. The Journal of Symbolic Logic, 2(4), 153–163.CrossRefGoogle Scholar
  50. Turing, A. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.MathSciNetCrossRefGoogle Scholar
  51. Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. B: Biological Sciences, 237(641), 37–72.Google Scholar
  52. Wilde, M. (2011). From classical to quantum Shannon theory. arXiv.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of ManagementUniversidad Externado de ColombiaBogotáColombia
  2. 2.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations