Fuzzy Optimization and Reasoning Approaches

  • Raúl Trujillo-CabezasEmail author
  • José Luis Verdegay
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 387)


Long-term strategic reflection is a process that faces several challenges. Among them the uncertainty, which may be due to a multitude of reasons. The literature covers a wide range of contributions with methods and models focused on dealing with uncertainty in terms of optimization of complex systems and little on dealing with conjecture processes to build knowledge about the future. The Future Studies and Soft Computing fields offer a meeting place for the notions of experience, meta-knowledge, macro-effects and non-arbitrariness. This chapter develops a proposed link between the two fields to help decision makers change their ways of thinking, make new decisions about the choices they have to make and learn to plant new seeds of the future.


  1. Agami, N., Saleh, M., & El-Shishiny, H. (2010). A fuzzy logic based trend impact analysis method. Technological Forecasting and Social Change, 77(7), 1051–1060.CrossRefGoogle Scholar
  2. Al-Ashmaway, W., El-Sisi, A., Nassar, H., & Ismail, N. (2007). Bilateral agent negotiation for e-commerce based on fuzzy logic. In IEEE 2007 International Conference on Computer Engineering and Systems (pp. 64–69).Google Scholar
  3. Aliev, R., Fazlollahi, B., & Aliev, R. (2012). Soft computing and its applications in business and economics (Vol. 157). Berlin: Springer.zbMATHGoogle Scholar
  4. Alipour, M., Hafezi, R., Amer, M., & Akhavan, A. N. (2017). A new hybrid fuzzy cognitive map-based scenario planning approach for Iran’s oil production pathways in the post–sanction period. Energy, 135, 851–864.CrossRefGoogle Scholar
  5. Alonso, S., Cabrerizo, F., Chiclana, F., Herrera, F., & Herrera-Viedma, E. (2009). Group decision making with incomplete fuzzy linguistic preference relations. International Journal of Intelligent Systems, 24(2), 201–222.zbMATHCrossRefGoogle Scholar
  6. Altman, D. (1994). Fuzzy set theoretic approaches for handling imprecision in spatial analysis. International Journal of Geographical Information Systems, 8(3), 271–289.CrossRefGoogle Scholar
  7. Amer, M., Daim, T., & Jetter, A. (2016). Technology roadmap through fuzzy cognitive map-based scenarios: The case of wind energy sector of a developing country. Technology Analysis & Strategic Management, 28(2), 131–155.CrossRefGoogle Scholar
  8. Amer, M., Jetter, A., & Daim, T. (2011). Development of fuzzy cognitive map (FCM)-based scenarios for wind energy. International Journal of Energy Sector Management, 5(4), 564–584.CrossRefGoogle Scholar
  9. Amin, S., Razmi, J., & Zhang, G. (2011). Supplier selection and order allocation based on fuzzy SWOT analysis and fuzzy linear programming. Expert Systems with Applications, 38(1), 334–342.CrossRefGoogle Scholar
  10. Asan, U., Bozdağ, C., & Polat, S. (2004). A fuzzy approach to qualitative cross impact analysis. Omega, 32(6), 443–458.CrossRefGoogle Scholar
  11. Babuška, R. (2012). Fuzzy modeling for control (Vol. 12). Berlin: Springer Science and Business Media.Google Scholar
  12. Bellman, R., & Zadeh, L. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141.Google Scholar
  13. Bello, R., & Verdegay, J. (2012). Rough sets in the soft computing environment. Information Sciences, 212, 1–14.MathSciNetCrossRefGoogle Scholar
  14. Ben-Tal, A., & Nemirovski, A. (2008). Selected topics in robust convex optimization. Mathematical Programming, 112(1), 125–158.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Birkhoff, G. (1948). Lattice theory (Vol. 25). American Mathematical Soc. Colloq.Google Scholar
  16. Bisserier, A. B. (2010). Linear fuzzy regression using trapezoidal fuzzy intervals. En Foundations of Reasoning under Uncertainty (págs. 1–22). Berlin, Heidelberg: Springer.Google Scholar
  17. Boran, F., Genç, S., Kurt, M., & Akay, D. (2009). A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Systems with Applications, 36, 11363–11368.CrossRefGoogle Scholar
  18. Brooker, M. (1986). Image display. Computed Tomography for Radiographers (pp. 21–33). Dordrecht: Springer.CrossRefGoogle Scholar
  19. Buckley, J. (2006). Fuzzy probability and statistics. Heidelberg: Springer.zbMATHGoogle Scholar
  20. Burda, M. (2015). Linguistic fuzzy logic in R. In 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).Google Scholar
  21. Cadenas, J. M., & Verdegay, J. L. (2009). Towards a new strategy for solving fuzzy optimization problems. Fuzzy Optimization and Decision Making, 8(3), 231–244.MathSciNetzbMATHCrossRefGoogle Scholar
  22. Calcagnì, A., & Lombardi, L. (2014). Dynamic fuzzy rating tracker (DYFRAT): A novel methodology for modeling real-time dynamic cognitive processes in rating scales. Applied Soft Computing, 24, 948–961.CrossRefGoogle Scholar
  23. Carlsson, C., & Fullér, R. (2009). Possibilistic mean value and variance of fuzzy numbers: Some examples of application. In IEEE International Conference on Fuzzy Systems. FUZZ-IEEE 2009 (pp. 587–592).Google Scholar
  24. Carlsson, C., & Fullér, R. (2011). Possibility for decision: A possibilistic approach to real life decisions. Springer Publishing Company, Incorporated.Google Scholar
  25. Ceballos, B., Jimenez, M., Mochcovsky, D., & Sanchez, J. (2013). El método TOPSIS relativo vs. absoluto. Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, (14), 181–192.Google Scholar
  26. Ceballos, B., Lamata, M., & Pelta, D. (2017). Fuzzy multicriteria decision-making methods: A comparative analysis. International Journal of Intelligent Systems, 32(7), 722–738.CrossRefGoogle Scholar
  27. Chang, P. (2005). Fuzzy strategic replacement analysis. European Journal of Operational Research, 160(2), 532–559.MathSciNetzbMATHCrossRefGoogle Scholar
  28. Chen, C. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114, 1–9.zbMATHCrossRefGoogle Scholar
  29. Chen, C., Lin, C., & Huang, S. (2006). A fuzzy approach for supplier evaluation and selection in supply chain management. International Journal of Production Economics, 102, 289–301.CrossRefGoogle Scholar
  30. Chen, D., & Yang, Y. (2014). Attribute reduction for heterogeneous data based on the combination of classical and fuzzy rough set models. IEEE Trans Fuzzy Systems, 22(5), 1325–1334.MathSciNetCrossRefGoogle Scholar
  31. Cingolani, P., & Alcalá-Fdez, J. (2013). jFuzzyLogic: A java library to design fuzzy logic controllers according to the standard for fuzzy control programming. International Journal of Computational Intelligence Systems, 6(sup1), 61–75.CrossRefGoogle Scholar
  32. Crespo, F., & Weber, R. (2005). A methodology for dynamic data mining based on fuzzy clustering. Fuzzy Sets and Systems, 150(2), 267–284.MathSciNetzbMATHCrossRefGoogle Scholar
  33. Creswell, J. (2003). Research design: Qualitative, quantitative, and mixed methods approaches (Vol. 4). Thousand Oaks, CA: Sage.Google Scholar
  34. Dorsey, D., & Coovert, M. (2003). Mathematical modeling of decision making: a soft and fuzzy approach to capturing hard decisions. Human Factors, 45(1), 117–135.CrossRefGoogle Scholar
  35. Dubois, D. (2010). Degrees of truth, ill-known sets and contradiction. In Foundations of reasoning under uncertainty (pp. 65–83). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  36. Dubois, D., & Prade, H. (1980). Fuzzy sets and systems: Theory and applications. New York: Academic Press.zbMATHGoogle Scholar
  37. Dubois, D., & Prade, H. (1987). The mean value of a fuzzy number. Fuzzy Sets and Systems, 24, 279–300.MathSciNetzbMATHCrossRefGoogle Scholar
  38. Feng, G. (2006). A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems, 14, 676–697.CrossRefGoogle Scholar
  39. Gao, Y., & Er, M. (2005). NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches. Fuzzy Sets and Systems, 150, 331–350.MathSciNetzbMATHCrossRefGoogle Scholar
  40. Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization (Vol. 7). Hoboken: Wiley.Google Scholar
  41. Giaoutzi, M., & Sapio, B. (2012). Recent developments in foresight methodologies (Vol. 1). Berlin: Springer Science and Business Media.Google Scholar
  42. Goumas, M., & Lygerou, V. (2000). An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects. European Journal of Operational Research, 123(3), 606–613.zbMATHCrossRefGoogle Scholar
  43. Hajek, P., Prochazka, O., & Pachura, P. (2017). Fuzzy cognitive maps based on text analysis for supporting strategic planning. In 2017 International Conference on Research and Innovation in Information Systems (ICRIIS) (pp. 1–6).Google Scholar
  44. Halmos, P. (1960). Naive set theory. The university series in undergraduate mathematics.Google Scholar
  45. Hannan, E. (1981). Linear programming with multiple fuzzy goals. Fuzzy Sets and Systems, 6(3), 235–248.MathSciNetzbMATHCrossRefGoogle Scholar
  46. Hellendoorn, H., & Reinfrank, M. (1991). Fuzzy control research at Siemens Corporate R&D. European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (pp. 206–210). Berlin: Springer.CrossRefGoogle Scholar
  47. Herrera, F., Herrera-Viedma, E., & Verdegay, J. (1996). A model of consensus in group decision making under linguistic assessments. Fuzzy Sets and Systems, 78(1), 73–87.MathSciNetzbMATHCrossRefGoogle Scholar
  48. Hirsch, S., Burggraf, P., & Daheim, C. (2013). Scenario planning with integrated quantification–managing uncertainty in corporate strategy building. Foresight, 15(5), 363–374.CrossRefGoogle Scholar
  49. Hsieh, T., Lu, S., & Tzeng, G. (2004). Fuzzy MCDM approach for planning and design tenders selection in public office buildings. International Journal of Project Management, 22(7), 573–584.CrossRefGoogle Scholar
  50. Hüllermeier, E. (2015). Does machine learning need fuzzy logic? Fuzzy Sets and Systems, 281, 292–299.MathSciNetCrossRefGoogle Scholar
  51. Hwang, C., Paidy, S., Yoon, H., & Masud, A. (1980). Mathematical programming with multiple objectives: A tutorial. Computers and Operations Research, 7(1–2), 5–31.CrossRefGoogle Scholar
  52. İntepe, G., Bozdag, E., & Koc, T. (2013). The selection of technology forecasting method using a multi-criteria interval-valued intuitionistic fuzzy group decision making approach. Computers & Industrial Engineering, 65(2), 277–285.CrossRefGoogle Scholar
  53. Jetter, A., & Kok, K. (2014). Fuzzy cognitive maps for futures studies—A methodological assessment of concepts and methods. Futures, 61, 45–57.CrossRefGoogle Scholar
  54. Kacprzyk, J. (1986). Group decision making with a fuzzy linguistic majority. Fuzzy Sets and Systems, 18(2), 105–118.MathSciNetzbMATHCrossRefGoogle Scholar
  55. Kacprzyk, J., Zadrożny, S., & De Tré, G. (2015). Fuzziness in database management systems: Half a century of developments and future prospects. Fuzzy Sets and Systems, 281, 300–307.MathSciNetCrossRefGoogle Scholar
  56. Karavezyris, V., Timpe, K., & Marzi, R. (2002). Application of system dynamics and fuzzy logic to forecasting of municipal solid waste. Mathematics and Computers in Simulation, 60, 149–158.MathSciNetzbMATHCrossRefGoogle Scholar
  57. Karlsen, J., & Karlsen, H. (2013). Classification of tools and approaches applicable in foresight studies. Recent developments in foresight methodologies (pp. 27–52). Boston, MA: Springer.CrossRefGoogle Scholar
  58. Kasabov, N. (2001). Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31(6), 902–918.CrossRefGoogle Scholar
  59. Kim, J., Han, M., Lee, Y., & Park, Y. (2016). Futuristic data-driven scenario building: Incorporating text mining and fuzzy association rule mining into fuzzy cognitive map. Expert Systems with Applications, 57, 311–323.CrossRefGoogle Scholar
  60. Kleene, S. (1952). Introduction to metamathematics. New York: Van Nostrand.zbMATHGoogle Scholar
  61. Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic (Vol. 4). New Jersey: Prentice hall.zbMATHGoogle Scholar
  62. Kosko, B. (1986a). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24(1), 65–75.zbMATHCrossRefGoogle Scholar
  63. Kosko, B. (1986b). Fuzzy knowledge combination. International Journal of Intelligent Systems, 1(4), 293–320.zbMATHCrossRefGoogle Scholar
  64. Lamata, M., Pelta, D., & Verdegay, J. (2018). Optimisation problems as decision problems: the case of fuzzy optimisation problems. Information Sciences, 460, 377–388.MathSciNetCrossRefGoogle Scholar
  65. LeLann, G. (1981). Motivations, objectives and characterization of distributed systems. In Distributed Systems—Architecture and Implementation (pp. 1–9). Berlin: Springer.Google Scholar
  66. Li, H., Wave, A., Di, L., Yuan, G., Swishchuk, A., & Yuan, S. (2016). The application of nonlinear fuzzy parameters PDE method in pricing and hedging European options. Fuzzy Sets and Systems, 331, 14–25.MathSciNetzbMATHCrossRefGoogle Scholar
  67. Li, J., & Kwan, R. (2003). A fuzzy genetic algorithm for driver scheduling. European Journal of Operational Research, 147(2), 334–344.zbMATHCrossRefGoogle Scholar
  68. Li, Q. (2013). A novel Likert scale based on fuzzy sets theory. Expert Systems with Applications, 40(5), 1609–1618.CrossRefGoogle Scholar
  69. Li, X., Ruan, D., & Van der Wal, A. (1998). Discussion on soft computing at FLINS’96. International Journal of Intelligent Systems, 13(2–3), 287–300.CrossRefGoogle Scholar
  70. Lin, C. T., & Lee, C. G. (1996). Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems (Vol. 205). Upper Saddle River, NJ: Prentice hall PTR.Google Scholar
  71. Liu, B. (2007). Uncertainty theory. Uncertainty theory (pp. 205–234). Berlin: Springer.CrossRefGoogle Scholar
  72. Lorenz, E. (1976). Nondeterministic theories of climatic change. Quaternary Research, 6(4), 495–506.CrossRefGoogle Scholar
  73. Maldonado, C. (2007). Complejidad: Ciencia, pensamiento y aplicación. Bogotá: Universidad Externado de Colombia.Google Scholar
  74. Masegosa, A., Pelta, D., & Verdegay, J. (2013). A centralised cooperative strategy for continuous optimisation: The influence of cooperation in performance and behaviour. Information Sciences, 219, 73–92.MathSciNetzbMATHCrossRefGoogle Scholar
  75. Maturana, H., Varela, F., & Behncke, R. (1984). El árbol del conocimiento: las bases biológicas del entendimiento humano (Vol. 1). Organización de Estados Americanos, OEA.Google Scholar
  76. McNeill, D., & Freiberger, P. (1994). Fuzzy logic: The revolutionary computer technology that is changing our world. New York: Simon and Schuster.zbMATHGoogle Scholar
  77. Melin, P., & Castillo, O. (2014). A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition. Applied Soft Computing, 21, 568–577.CrossRefGoogle Scholar
  78. Mohagheghi, V., Mousavi, S., & Vahdani, B. (2017). Enhancing decision-making flexibility by introducing a new last aggregation evaluating approach based on multi-criteria group decision making and Pythagorean fuzzy sets. Applied Soft Computing, 61, 527–535.CrossRefGoogle Scholar
  79. Nazarimehr, F., Sheikh, J., Ahmadi, M., Pham, V., & Jafari, S. (2018). Fuzzy predictive controller for chaotic flows based on continuous signals. Chaos, Solitons & Fractals, 106, 349–354.MathSciNetzbMATHCrossRefGoogle Scholar
  80. Neapolitan, R. (2012). Probabilistic reasoning in expert systems: Theory and algorithms. In CreateSpace Independent Publishing Platform.Google Scholar
  81. Neumann, M. (2009). Emergence as an explanatory principle in artificial societies. Reflection on the bottom-up approach to social theory. In Epistemological aspects of computer simulation in the social sciences (pp. 69–88). Berlin: Springer.CrossRefGoogle Scholar
  82. Opricovic, S., & Tzeng, G. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.zbMATHCrossRefGoogle Scholar
  83. Pau, L., & Gianotti, C. (1990). Applications of artificial intelligence in banking, financial services and economics. Economic and Financial Knowledge-Based Processing (pp. 22–46). Berlin: Springer.zbMATHCrossRefGoogle Scholar
  84. Pearl, J. (2014). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Amsterdam: Elsevier.zbMATHGoogle Scholar
  85. Pérez, I., Wikström, R., Mezei, J., Carlsson, C., & Herrera-Viedma, E. (2013). A new consensus model for group decision making using fuzzy ontology. Soft Computing, 17(9), 1617–1627.CrossRefGoogle Scholar
  86. Perrone, G., & La Diega, S. (1998). Fuzzy methods for analysing fuzzy production environment. Robotics and Computer-Integrated Manufacturing, 14(5–6), 465–474.CrossRefGoogle Scholar
  87. Ragin, C. (2000). Fuzzy-set social science. Chicago: University of Chicago Press.Google Scholar
  88. Ragin, C. (2009a). Qualitative comparative analysis using fuzzy sets (fsQCA). Configurational Comparative Methods, 51, 87–121.Google Scholar
  89. Ragin, C. (2009b). Redesigning social inquiry: Fuzzy sets and beyond. Chicago: University of Chicago Press.Google Scholar
  90. Reeves, C. R. (1993, June). Using genetic algorithms with small populations. In ICGA (Vol. 590, p. 92).Google Scholar
  91. Ribeiro, R. (1996). Fuzzy multiple attribute decision making: A review and new preference elicitation techniques. Fuzzy Sets and Systems, 78(2), 155–182.MathSciNetzbMATHCrossRefGoogle Scholar
  92. Riza, L., Bergmeir, C., Herrera, F., & Benítez Sánchez, J. (2015). frbs: Fuzzy rule-based systems for classification and regression in R. American Statistical Association.Google Scholar
  93. Rotmans, J., Kemp, R., & Van Asselt, M. (2001). More evolution than revolution: Transition management in public policy. Foresight, 3(1), 15–31.CrossRefGoogle Scholar
  94. Russell, B. (1923). Vagueness. The Australasian Journal of Psychology and Philosophy, 1(2), 84–92.CrossRefGoogle Scholar
  95. Sahinidis, N. (2004). Optimization under uncertainty: State-of-the-art and opportunities. Computers & Chemical Engineering, 28(6–7), 971–983.CrossRefGoogle Scholar
  96. Salmeron, J., Vidal, R., & Mena, A. (2012). Ranking fuzzy cognitive map based scenarios with TOPSIS. Expert Systems with Applications, 39(3), 2443–2450.CrossRefGoogle Scholar
  97. Sanayei, A., Mousavi, S., & Yazdankhah, A. (2010). Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Systems with Applications, 37(1), 24–30.CrossRefGoogle Scholar
  98. Sanchez, R. (1995). Strategic flexibility in product competition. Strategic Management Journal, 16(S1), 135–159.CrossRefGoogle Scholar
  99. Seising, R., & Sanz, V. (2012). From hard science and computing to soft science and computing—An introductory survey. In Soft computing in humanities and social sciences (pp. 3–36). Berlin, Heidelberg: Springer.Google Scholar
  100. Simon, H. (1972). Theories of bounded rationality. Decision and Organization, 1(1), 161–176.MathSciNetGoogle Scholar
  101. Singh, R., Khilwani, N., & Tiwari, M. (2007). Justification for the selection of a reconfigurable manufacturing system: a fuzzy analytical hierarchy based approach. International Journal of Production Research, 45, 3165–3190.zbMATHCrossRefGoogle Scholar
  102. Smithson, M. (1985a). Ignorance and uncertainty: Emerging paradigms (Vol. 15). Berlin: Springer Science and Business Media.Google Scholar
  103. Smithson, M. (1985b). Toward a social theory of ignorance. Journal for the Theory of Social Behaviour, 15(2), 151–172.CrossRefGoogle Scholar
  104. Stephen, C., & Labib, A. (2018). A hybrid model for learning from failures. Expert Systems with Applications, 93, 212–222.CrossRefGoogle Scholar
  105. Szolovits, P., & Pauker, S. (1978). Categorical and probabilistic reasoning in medical diagnosis. Artificial Intelligence, 11(1–2), 115–144.CrossRefGoogle Scholar
  106. Talbi, E. (2002). A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8(5), 541–564.CrossRefGoogle Scholar
  107. Triantaphyllou, E. (2000). Multi-criteria decision making methods. Multi-criteria decision making methods: A comparative study (pp. 5–21). Boston, MA: Springer.zbMATHCrossRefGoogle Scholar
  108. Trujillo-Cabezas, R. (2013). Prospectiva y teoría de la complejidad. En C. Maldonado, Derivas de Complejidad. Ciencias Sociales y Tecnologías Convergentes (págs. 167–211). Editorial Universidad del Rosario.Google Scholar
  109. Van der Brugge, R., & Rotmans, J. (2007). Towards transition management of European water resources. Water Resources Management, 21(1), 249–267.CrossRefGoogle Scholar
  110. Verdegay, J. L., Yager, R., & Bonissone, P. (2008). On heuristics as a fundamental constituent of soft computing. Fuzzy Sets and Systems, 159(7), 846–855.MathSciNetCrossRefGoogle Scholar
  111. Villacorta, P., Masegosa, A., Castellanos, D., & Lamata, M. (2014). A new fuzzy linguistic approach to qualitative cross impact analysis. Applied Soft Computing, 24, 19–30.CrossRefGoogle Scholar
  112. Villacorta, P., Masegosa, A., & Lamata, M. (2013). Fuzzy linguistic multicriteria morphological analysis in scenario planning. In IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) (pp. 777–782).Google Scholar
  113. Wang, C. (2004). Predicting tourism demand using fuzzy time series and hybrid grey theory. Tourism Management, 25(3), 367–374.CrossRefGoogle Scholar
  114. Wang, L. X., & Wang, L. X. (1997). A course in fuzzy systems and control (Vol. 2). Upper Saddle River, NJ: Prentice Hall PTR.Google Scholar
  115. Wang, J., Liu, S., & Zhang, J. (2005). An extension of TOPSIS for fuzzy MCDM based on vague set theory. Journal of Systems Science and Systems Engineering, 14(1), 73–84.CrossRefGoogle Scholar
  116. Wang, T., & Chang, T. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 33, 870–880.CrossRefGoogle Scholar
  117. Yager, R. (1977). Multiple objective decision-making using fuzzy sets. International Journal of Man-Machine Studies, 9(4), 375–382.zbMATHCrossRefGoogle Scholar
  118. Yager, R. (1978). Fuzzy decision making including unequal objectives. Fuzzy Sets and Systems, 1(2), 87–95.zbMATHCrossRefGoogle Scholar
  119. Yager, R. (1980). On choosing between fuzzy subsets. Kybernetes, 9(2), 151–154.zbMATHCrossRefGoogle Scholar
  120. Yager, R. (2002). Uncertainty representation using fuzzy measures. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 32(1), 13–20.CrossRefGoogle Scholar
  121. Yager, R., & Zadeh, L. (2012). An introduction to fuzzy logic applications in intelligent systems (Vol. 165). Berlin: Springer Science and Business Media.zbMATHGoogle Scholar
  122. Yager, R. R., Zadeh, L. A., Kosko, B., & Grossberg, S. (1994). Fuzzy sets, neural networks, and soft computing (No. 006.33 F8).Google Scholar
  123. Yuan, Y. (2013). Forecasting the movement direction of exchange rate with polynomial smooth support vector machine. Mathematical and Computer Modelling, 57(3–4), 932–944.MathSciNetzbMATHCrossRefGoogle Scholar
  124. Yüksel, I., & Dağdeviren, M. (2010). Using the fuzzy analytic network process (ANP) for Balanced Scorecard (BSC): A case study for a manufacturing firm. Expert Systems with Applications, 37(2), 1270–1278.CrossRefGoogle Scholar
  125. Zadeh, L. A. (1965). Fuzzy set. Information and Control, 8, 338–353.MathSciNetzbMATHCrossRefGoogle Scholar
  126. Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man, and Cybernetics, 1, 28–44.MathSciNetzbMATHCrossRefGoogle Scholar
  127. Zadeh, L. A. (1975). Calculus of fuzzy restrictions. In Fuzzy sets and their applications to cognitive and decision processes (pp. 1–39).Google Scholar
  128. Zadeh, L. A. (1990). The birth and evolution of fuzzy logic. International Journal of General System, 17(2–3), 95–105.zbMATHCrossRefGoogle Scholar
  129. Zadeh, L. A. (1993). Fuzzy logic, neural networks and soft computing. In Safety Evaluation Based on Identification Approaches Related to Time-Variant and Nonlinear Structures (pp. 320–321). Vieweg + Teubner Verlag.Google Scholar
  130. Zadeh, L. A. (1994). Fuzzy logic and soft computing: Issues, contentions and perspectives. In Proceedings of IIZUKA’94: 3rd International Conference on Fuzzy Logic, Neural Nets and Soft Computing, Iizuka, Japan (pp. 1–2).Google Scholar
  131. Zadeh, L. A. (1996). Fuzzy logic, neural networks, and soft computing. In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh (pp. 775–782).Google Scholar
  132. Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 100(1), 9–34.MathSciNetCrossRefGoogle Scholar
  133. Zadeh, L. A. (2000). Fuzzy sets and fuzzy information-granulation theory: Key selected papers. Beijing: Beijing Normal University Press.Google Scholar
  134. Zadeh, L. A. (2001a). Applied soft computing. Applied Soft Computing, 1, 1–2.CrossRefGoogle Scholar
  135. Zadeh, L. A. (2001b). A new direction in AI: Toward a computational theory of perceptions. AI magazine, 22(1), 73.zbMATHGoogle Scholar
  136. Zadeh, L. A. (2005). Toward a generalized theory of uncertainty (GTU)—An outline. Information Sciences, 172(1–2), 1–40.MathSciNetzbMATHCrossRefGoogle Scholar
  137. Zadeh, L. A. (2008). Is there a need for fuzzy logic? Information Sciences, 178(13), 2751–2779.MathSciNetzbMATHCrossRefGoogle Scholar
  138. Zadeh, L. A., & Desoer, C. (2008). Linear system theory: The state space approach. USA: Courier Dover Publications.zbMATHGoogle Scholar
  139. Zadeh, L. A., Fu, K. S., & Tanaka, K. (2014). Fuzzy sets and their applications to cognitive and decision processes. In Proceedings of the US–Japan Seminar on Fuzzy Sets and Their Applications, Held at the University Of California, Berkeley, California. July 1–4, 1974. Academic press.Google Scholar
  140. Zeigler, B., Moon, Y., Lopes, V., & Kim, J. (1996). DEVS approximation of infiltration using genetic algorithm optimization of a fuzzy system. Mathematical and Computer Modelling, 23(11–12), 215–228.MathSciNetzbMATHCrossRefGoogle Scholar
  141. Zhao, J., Wertz, V., & Gorez, R. (1994). A fuzzy clustering method for the identification of fuzzy models for dynamic systems. In Proceedings of the 1994 IEEE International Symposium on Intelligent Control (pp. 172–177).Google Scholar
  142. Zimmermann, H. (1975). Description and optimization of fuzzy systems. International Journal of General System, 2(1), 209–215.zbMATHCrossRefGoogle Scholar
  143. Zimmermann, H. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45–55.MathSciNetzbMATHCrossRefGoogle Scholar
  144. Zimmermann, H. (1996). Fuzzy control. In Fuzzy Set Theory—and Its Applications (pp. 203–240).CrossRefGoogle Scholar
  145. Zimmermann, H. (2012). Fuzzy sets, decision making, and expert systems (Vol. 10). Berlin: Springer Science and Business Media.Google Scholar
  146. Zimmermann, H., & Zysno, P. (1980). Latent connectives in human decision making. Fuzzy Sets and Systems, 4(1), 37–51.zbMATHCrossRefGoogle Scholar
  147. Zolotukhin, A., & Gudmestad, O. (2002). Application of fuzzy sets theory in qualitative and quantitative risk assessment. International Journal of Offshore and Polar Engineering, 12(4).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of ManagementUniversidad Externado de ColombiaBogotáColombia
  2. 2.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations