Skip to main content

Fuzzy Optimization and Reasoning Approaches

  • Chapter
  • First Online:
  • 713 Accesses

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 387))

Abstract

Long-term strategic reflection is a process that faces several challenges. Among them the uncertainty, which may be due to a multitude of reasons. The literature covers a wide range of contributions with methods and models focused on dealing with uncertainty in terms of optimization of complex systems and little on dealing with conjecture processes to build knowledge about the future. The Future Studies and Soft Computing fields offer a meeting place for the notions of experience, meta-knowledge, macro-effects and non-arbitrariness. This chapter develops a proposed link between the two fields to help decision makers change their ways of thinking, make new decisions about the choices they have to make and learn to plant new seeds of the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Meaning the so-called Possibilistic Relational Universal Fuzzy (PRUF).

References

  • Agami, N., Saleh, M., & El-Shishiny, H. (2010). A fuzzy logic based trend impact analysis method. Technological Forecasting and Social Change, 77(7), 1051–1060.

    Article  Google Scholar 

  • Al-Ashmaway, W., El-Sisi, A., Nassar, H., & Ismail, N. (2007). Bilateral agent negotiation for e-commerce based on fuzzy logic. In IEEE 2007 International Conference on Computer Engineering and Systems (pp. 64–69).

    Google Scholar 

  • Aliev, R., Fazlollahi, B., & Aliev, R. (2012). Soft computing and its applications in business and economics (Vol. 157). Berlin: Springer.

    MATH  Google Scholar 

  • Alipour, M., Hafezi, R., Amer, M., & Akhavan, A. N. (2017). A new hybrid fuzzy cognitive map-based scenario planning approach for Iran’s oil production pathways in the post–sanction period. Energy, 135, 851–864.

    Article  Google Scholar 

  • Alonso, S., Cabrerizo, F., Chiclana, F., Herrera, F., & Herrera-Viedma, E. (2009). Group decision making with incomplete fuzzy linguistic preference relations. International Journal of Intelligent Systems, 24(2), 201–222.

    Article  MATH  Google Scholar 

  • Altman, D. (1994). Fuzzy set theoretic approaches for handling imprecision in spatial analysis. International Journal of Geographical Information Systems, 8(3), 271–289.

    Article  Google Scholar 

  • Amer, M., Daim, T., & Jetter, A. (2016). Technology roadmap through fuzzy cognitive map-based scenarios: The case of wind energy sector of a developing country. Technology Analysis & Strategic Management, 28(2), 131–155.

    Article  Google Scholar 

  • Amer, M., Jetter, A., & Daim, T. (2011). Development of fuzzy cognitive map (FCM)-based scenarios for wind energy. International Journal of Energy Sector Management, 5(4), 564–584.

    Article  Google Scholar 

  • Amin, S., Razmi, J., & Zhang, G. (2011). Supplier selection and order allocation based on fuzzy SWOT analysis and fuzzy linear programming. Expert Systems with Applications, 38(1), 334–342.

    Article  Google Scholar 

  • Asan, U., Bozdağ, C., & Polat, S. (2004). A fuzzy approach to qualitative cross impact analysis. Omega, 32(6), 443–458.

    Article  Google Scholar 

  • Babuška, R. (2012). Fuzzy modeling for control (Vol. 12). Berlin: Springer Science and Business Media.

    Google Scholar 

  • Bellman, R., & Zadeh, L. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141.

    Google Scholar 

  • Bello, R., & Verdegay, J. (2012). Rough sets in the soft computing environment. Information Sciences, 212, 1–14.

    Article  MathSciNet  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (2008). Selected topics in robust convex optimization. Mathematical Programming, 112(1), 125–158.

    Article  MathSciNet  MATH  Google Scholar 

  • Birkhoff, G. (1948). Lattice theory (Vol. 25). American Mathematical Soc. Colloq.

    Google Scholar 

  • Bisserier, A. B. (2010). Linear fuzzy regression using trapezoidal fuzzy intervals. En Foundations of Reasoning under Uncertainty (págs. 1–22). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Boran, F., Genç, S., Kurt, M., & Akay, D. (2009). A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Systems with Applications, 36, 11363–11368.

    Article  Google Scholar 

  • Brooker, M. (1986). Image display. Computed Tomography for Radiographers (pp. 21–33). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Buckley, J. (2006). Fuzzy probability and statistics. Heidelberg: Springer.

    MATH  Google Scholar 

  • Burda, M. (2015). Linguistic fuzzy logic in R. In 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

    Google Scholar 

  • Cadenas, J. M., & Verdegay, J. L. (2009). Towards a new strategy for solving fuzzy optimization problems. Fuzzy Optimization and Decision Making, 8(3), 231–244.

    Article  MathSciNet  MATH  Google Scholar 

  • Calcagnì, A., & Lombardi, L. (2014). Dynamic fuzzy rating tracker (DYFRAT): A novel methodology for modeling real-time dynamic cognitive processes in rating scales. Applied Soft Computing, 24, 948–961.

    Article  Google Scholar 

  • Carlsson, C., & Fullér, R. (2009). Possibilistic mean value and variance of fuzzy numbers: Some examples of application. In IEEE International Conference on Fuzzy Systems. FUZZ-IEEE 2009 (pp. 587–592).

    Google Scholar 

  • Carlsson, C., & Fullér, R. (2011). Possibility for decision: A possibilistic approach to real life decisions. Springer Publishing Company, Incorporated.

    Google Scholar 

  • Ceballos, B., Jimenez, M., Mochcovsky, D., & Sanchez, J. (2013). El método TOPSIS relativo vs. absoluto. Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, (14), 181–192.

    Google Scholar 

  • Ceballos, B., Lamata, M., & Pelta, D. (2017). Fuzzy multicriteria decision-making methods: A comparative analysis. International Journal of Intelligent Systems, 32(7), 722–738.

    Article  Google Scholar 

  • Chang, P. (2005). Fuzzy strategic replacement analysis. European Journal of Operational Research, 160(2), 532–559.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, C. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114, 1–9.

    Article  MATH  Google Scholar 

  • Chen, C., Lin, C., & Huang, S. (2006). A fuzzy approach for supplier evaluation and selection in supply chain management. International Journal of Production Economics, 102, 289–301.

    Article  Google Scholar 

  • Chen, D., & Yang, Y. (2014). Attribute reduction for heterogeneous data based on the combination of classical and fuzzy rough set models. IEEE Trans Fuzzy Systems, 22(5), 1325–1334.

    Article  MathSciNet  Google Scholar 

  • Cingolani, P., & Alcalá-Fdez, J. (2013). jFuzzyLogic: A java library to design fuzzy logic controllers according to the standard for fuzzy control programming. International Journal of Computational Intelligence Systems, 6(sup1), 61–75.

    Article  Google Scholar 

  • Crespo, F., & Weber, R. (2005). A methodology for dynamic data mining based on fuzzy clustering. Fuzzy Sets and Systems, 150(2), 267–284.

    Article  MathSciNet  MATH  Google Scholar 

  • Creswell, J. (2003). Research design: Qualitative, quantitative, and mixed methods approaches (Vol. 4). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Dorsey, D., & Coovert, M. (2003). Mathematical modeling of decision making: a soft and fuzzy approach to capturing hard decisions. Human Factors, 45(1), 117–135.

    Article  Google Scholar 

  • Dubois, D. (2010). Degrees of truth, ill-known sets and contradiction. In Foundations of reasoning under uncertainty (pp. 65–83). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Dubois, D., & Prade, H. (1980). Fuzzy sets and systems: Theory and applications. New York: Academic Press.

    MATH  Google Scholar 

  • Dubois, D., & Prade, H. (1987). The mean value of a fuzzy number. Fuzzy Sets and Systems, 24, 279–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, G. (2006). A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems, 14, 676–697.

    Article  Google Scholar 

  • Gao, Y., & Er, M. (2005). NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches. Fuzzy Sets and Systems, 150, 331–350.

    Article  MathSciNet  MATH  Google Scholar 

  • Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization (Vol. 7). Hoboken: Wiley.

    Google Scholar 

  • Giaoutzi, M., & Sapio, B. (2012). Recent developments in foresight methodologies (Vol. 1). Berlin: Springer Science and Business Media.

    Google Scholar 

  • Goumas, M., & Lygerou, V. (2000). An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects. European Journal of Operational Research, 123(3), 606–613.

    Article  MATH  Google Scholar 

  • Hajek, P., Prochazka, O., & Pachura, P. (2017). Fuzzy cognitive maps based on text analysis for supporting strategic planning. In 2017 International Conference on Research and Innovation in Information Systems (ICRIIS) (pp. 1–6).

    Google Scholar 

  • Halmos, P. (1960). Naive set theory. The university series in undergraduate mathematics.

    Google Scholar 

  • Hannan, E. (1981). Linear programming with multiple fuzzy goals. Fuzzy Sets and Systems, 6(3), 235–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Hellendoorn, H., & Reinfrank, M. (1991). Fuzzy control research at Siemens Corporate R&D. European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (pp. 206–210). Berlin: Springer.

    Chapter  Google Scholar 

  • Herrera, F., Herrera-Viedma, E., & Verdegay, J. (1996). A model of consensus in group decision making under linguistic assessments. Fuzzy Sets and Systems, 78(1), 73–87.

    Article  MathSciNet  MATH  Google Scholar 

  • Hirsch, S., Burggraf, P., & Daheim, C. (2013). Scenario planning with integrated quantification–managing uncertainty in corporate strategy building. Foresight, 15(5), 363–374.

    Article  Google Scholar 

  • Hsieh, T., Lu, S., & Tzeng, G. (2004). Fuzzy MCDM approach for planning and design tenders selection in public office buildings. International Journal of Project Management, 22(7), 573–584.

    Article  Google Scholar 

  • Hüllermeier, E. (2015). Does machine learning need fuzzy logic? Fuzzy Sets and Systems, 281, 292–299.

    Article  MathSciNet  Google Scholar 

  • Hwang, C., Paidy, S., Yoon, H., & Masud, A. (1980). Mathematical programming with multiple objectives: A tutorial. Computers and Operations Research, 7(1–2), 5–31.

    Article  Google Scholar 

  • İntepe, G., Bozdag, E., & Koc, T. (2013). The selection of technology forecasting method using a multi-criteria interval-valued intuitionistic fuzzy group decision making approach. Computers & Industrial Engineering, 65(2), 277–285.

    Article  Google Scholar 

  • Jetter, A., & Kok, K. (2014). Fuzzy cognitive maps for futures studies—A methodological assessment of concepts and methods. Futures, 61, 45–57.

    Article  Google Scholar 

  • Kacprzyk, J. (1986). Group decision making with a fuzzy linguistic majority. Fuzzy Sets and Systems, 18(2), 105–118.

    Article  MathSciNet  MATH  Google Scholar 

  • Kacprzyk, J., Zadrożny, S., & De Tré, G. (2015). Fuzziness in database management systems: Half a century of developments and future prospects. Fuzzy Sets and Systems, 281, 300–307.

    Article  MathSciNet  Google Scholar 

  • Karavezyris, V., Timpe, K., & Marzi, R. (2002). Application of system dynamics and fuzzy logic to forecasting of municipal solid waste. Mathematics and Computers in Simulation, 60, 149–158.

    Article  MathSciNet  MATH  Google Scholar 

  • Karlsen, J., & Karlsen, H. (2013). Classification of tools and approaches applicable in foresight studies. Recent developments in foresight methodologies (pp. 27–52). Boston, MA: Springer.

    Chapter  Google Scholar 

  • Kasabov, N. (2001). Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31(6), 902–918.

    Article  Google Scholar 

  • Kim, J., Han, M., Lee, Y., & Park, Y. (2016). Futuristic data-driven scenario building: Incorporating text mining and fuzzy association rule mining into fuzzy cognitive map. Expert Systems with Applications, 57, 311–323.

    Article  Google Scholar 

  • Kleene, S. (1952). Introduction to metamathematics. New York: Van Nostrand.

    MATH  Google Scholar 

  • Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic (Vol. 4). New Jersey: Prentice hall.

    MATH  Google Scholar 

  • Kosko, B. (1986a). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24(1), 65–75.

    Article  MATH  Google Scholar 

  • Kosko, B. (1986b). Fuzzy knowledge combination. International Journal of Intelligent Systems, 1(4), 293–320.

    Article  MATH  Google Scholar 

  • Lamata, M., Pelta, D., & Verdegay, J. (2018). Optimisation problems as decision problems: the case of fuzzy optimisation problems. Information Sciences, 460, 377–388.

    Article  MathSciNet  Google Scholar 

  • LeLann, G. (1981). Motivations, objectives and characterization of distributed systems. In Distributed Systems—Architecture and Implementation (pp. 1–9). Berlin: Springer.

    Google Scholar 

  • Li, H., Wave, A., Di, L., Yuan, G., Swishchuk, A., & Yuan, S. (2016). The application of nonlinear fuzzy parameters PDE method in pricing and hedging European options. Fuzzy Sets and Systems, 331, 14–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, J., & Kwan, R. (2003). A fuzzy genetic algorithm for driver scheduling. European Journal of Operational Research, 147(2), 334–344.

    Article  MATH  Google Scholar 

  • Li, Q. (2013). A novel Likert scale based on fuzzy sets theory. Expert Systems with Applications, 40(5), 1609–1618.

    Article  Google Scholar 

  • Li, X., Ruan, D., & Van der Wal, A. (1998). Discussion on soft computing at FLINS’96. International Journal of Intelligent Systems, 13(2–3), 287–300.

    Article  Google Scholar 

  • Lin, C. T., & Lee, C. G. (1996). Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems (Vol. 205). Upper Saddle River, NJ: Prentice hall PTR.

    Google Scholar 

  • Liu, B. (2007). Uncertainty theory. Uncertainty theory (pp. 205–234). Berlin: Springer.

    Chapter  Google Scholar 

  • Lorenz, E. (1976). Nondeterministic theories of climatic change. Quaternary Research, 6(4), 495–506.

    Article  Google Scholar 

  • Maldonado, C. (2007). Complejidad: Ciencia, pensamiento y aplicación. Bogotá: Universidad Externado de Colombia.

    Google Scholar 

  • Masegosa, A., Pelta, D., & Verdegay, J. (2013). A centralised cooperative strategy for continuous optimisation: The influence of cooperation in performance and behaviour. Information Sciences, 219, 73–92.

    Article  MathSciNet  MATH  Google Scholar 

  • Maturana, H., Varela, F., & Behncke, R. (1984). El árbol del conocimiento: las bases biológicas del entendimiento humano (Vol. 1). Organización de Estados Americanos, OEA.

    Google Scholar 

  • McNeill, D., & Freiberger, P. (1994). Fuzzy logic: The revolutionary computer technology that is changing our world. New York: Simon and Schuster.

    MATH  Google Scholar 

  • Melin, P., & Castillo, O. (2014). A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition. Applied Soft Computing, 21, 568–577.

    Article  Google Scholar 

  • Mohagheghi, V., Mousavi, S., & Vahdani, B. (2017). Enhancing decision-making flexibility by introducing a new last aggregation evaluating approach based on multi-criteria group decision making and Pythagorean fuzzy sets. Applied Soft Computing, 61, 527–535.

    Article  Google Scholar 

  • Nazarimehr, F., Sheikh, J., Ahmadi, M., Pham, V., & Jafari, S. (2018). Fuzzy predictive controller for chaotic flows based on continuous signals. Chaos, Solitons & Fractals, 106, 349–354.

    Article  MathSciNet  MATH  Google Scholar 

  • Neapolitan, R. (2012). Probabilistic reasoning in expert systems: Theory and algorithms. In CreateSpace Independent Publishing Platform.

    Google Scholar 

  • Neumann, M. (2009). Emergence as an explanatory principle in artificial societies. Reflection on the bottom-up approach to social theory. In Epistemological aspects of computer simulation in the social sciences (pp. 69–88). Berlin: Springer.

    Chapter  Google Scholar 

  • Opricovic, S., & Tzeng, G. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.

    Article  MATH  Google Scholar 

  • Pau, L., & Gianotti, C. (1990). Applications of artificial intelligence in banking, financial services and economics. Economic and Financial Knowledge-Based Processing (pp. 22–46). Berlin: Springer.

    Chapter  MATH  Google Scholar 

  • Pearl, J. (2014). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Amsterdam: Elsevier.

    MATH  Google Scholar 

  • Pérez, I., Wikström, R., Mezei, J., Carlsson, C., & Herrera-Viedma, E. (2013). A new consensus model for group decision making using fuzzy ontology. Soft Computing, 17(9), 1617–1627.

    Article  Google Scholar 

  • Perrone, G., & La Diega, S. (1998). Fuzzy methods for analysing fuzzy production environment. Robotics and Computer-Integrated Manufacturing, 14(5–6), 465–474.

    Article  Google Scholar 

  • Ragin, C. (2000). Fuzzy-set social science. Chicago: University of Chicago Press.

    Google Scholar 

  • Ragin, C. (2009a). Qualitative comparative analysis using fuzzy sets (fsQCA). Configurational Comparative Methods, 51, 87–121.

    Google Scholar 

  • Ragin, C. (2009b). Redesigning social inquiry: Fuzzy sets and beyond. Chicago: University of Chicago Press.

    Google Scholar 

  • Reeves, C. R. (1993, June). Using genetic algorithms with small populations. In ICGA (Vol. 590, p. 92).

    Google Scholar 

  • Ribeiro, R. (1996). Fuzzy multiple attribute decision making: A review and new preference elicitation techniques. Fuzzy Sets and Systems, 78(2), 155–182.

    Article  MathSciNet  MATH  Google Scholar 

  • Riza, L., Bergmeir, C., Herrera, F., & Benítez Sánchez, J. (2015). frbs: Fuzzy rule-based systems for classification and regression in R. American Statistical Association.

    Google Scholar 

  • Rotmans, J., Kemp, R., & Van Asselt, M. (2001). More evolution than revolution: Transition management in public policy. Foresight, 3(1), 15–31.

    Article  Google Scholar 

  • Russell, B. (1923). Vagueness. The Australasian Journal of Psychology and Philosophy, 1(2), 84–92.

    Article  Google Scholar 

  • Sahinidis, N. (2004). Optimization under uncertainty: State-of-the-art and opportunities. Computers & Chemical Engineering, 28(6–7), 971–983.

    Article  Google Scholar 

  • Salmeron, J., Vidal, R., & Mena, A. (2012). Ranking fuzzy cognitive map based scenarios with TOPSIS. Expert Systems with Applications, 39(3), 2443–2450.

    Article  Google Scholar 

  • Sanayei, A., Mousavi, S., & Yazdankhah, A. (2010). Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Systems with Applications, 37(1), 24–30.

    Article  Google Scholar 

  • Sanchez, R. (1995). Strategic flexibility in product competition. Strategic Management Journal, 16(S1), 135–159.

    Article  Google Scholar 

  • Seising, R., & Sanz, V. (2012). From hard science and computing to soft science and computing—An introductory survey. In Soft computing in humanities and social sciences (pp. 3–36). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Simon, H. (1972). Theories of bounded rationality. Decision and Organization, 1(1), 161–176.

    MathSciNet  Google Scholar 

  • Singh, R., Khilwani, N., & Tiwari, M. (2007). Justification for the selection of a reconfigurable manufacturing system: a fuzzy analytical hierarchy based approach. International Journal of Production Research, 45, 3165–3190.

    Article  MATH  Google Scholar 

  • Smithson, M. (1985a). Ignorance and uncertainty: Emerging paradigms (Vol. 15). Berlin: Springer Science and Business Media.

    Google Scholar 

  • Smithson, M. (1985b). Toward a social theory of ignorance. Journal for the Theory of Social Behaviour, 15(2), 151–172.

    Article  Google Scholar 

  • Stephen, C., & Labib, A. (2018). A hybrid model for learning from failures. Expert Systems with Applications, 93, 212–222.

    Article  Google Scholar 

  • Szolovits, P., & Pauker, S. (1978). Categorical and probabilistic reasoning in medical diagnosis. Artificial Intelligence, 11(1–2), 115–144.

    Article  Google Scholar 

  • Talbi, E. (2002). A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8(5), 541–564.

    Article  Google Scholar 

  • Triantaphyllou, E. (2000). Multi-criteria decision making methods. Multi-criteria decision making methods: A comparative study (pp. 5–21). Boston, MA: Springer.

    Chapter  MATH  Google Scholar 

  • Trujillo-Cabezas, R. (2013). Prospectiva y teoría de la complejidad. En C. Maldonado, Derivas de Complejidad. Ciencias Sociales y Tecnologías Convergentes (págs. 167–211). Editorial Universidad del Rosario.

    Google Scholar 

  • Van der Brugge, R., & Rotmans, J. (2007). Towards transition management of European water resources. Water Resources Management, 21(1), 249–267.

    Article  Google Scholar 

  • Verdegay, J. L., Yager, R., & Bonissone, P. (2008). On heuristics as a fundamental constituent of soft computing. Fuzzy Sets and Systems, 159(7), 846–855.

    Article  MathSciNet  Google Scholar 

  • Villacorta, P., Masegosa, A., Castellanos, D., & Lamata, M. (2014). A new fuzzy linguistic approach to qualitative cross impact analysis. Applied Soft Computing, 24, 19–30.

    Article  Google Scholar 

  • Villacorta, P., Masegosa, A., & Lamata, M. (2013). Fuzzy linguistic multicriteria morphological analysis in scenario planning. In IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) (pp. 777–782).

    Google Scholar 

  • Wang, C. (2004). Predicting tourism demand using fuzzy time series and hybrid grey theory. Tourism Management, 25(3), 367–374.

    Article  Google Scholar 

  • Wang, L. X., & Wang, L. X. (1997). A course in fuzzy systems and control (Vol. 2). Upper Saddle River, NJ: Prentice Hall PTR.

    Google Scholar 

  • Wang, J., Liu, S., & Zhang, J. (2005). An extension of TOPSIS for fuzzy MCDM based on vague set theory. Journal of Systems Science and Systems Engineering, 14(1), 73–84.

    Article  Google Scholar 

  • Wang, T., & Chang, T. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 33, 870–880.

    Article  Google Scholar 

  • Yager, R. (1977). Multiple objective decision-making using fuzzy sets. International Journal of Man-Machine Studies, 9(4), 375–382.

    Article  MATH  Google Scholar 

  • Yager, R. (1978). Fuzzy decision making including unequal objectives. Fuzzy Sets and Systems, 1(2), 87–95.

    Article  MATH  Google Scholar 

  • Yager, R. (1980). On choosing between fuzzy subsets. Kybernetes, 9(2), 151–154.

    Article  MATH  Google Scholar 

  • Yager, R. (2002). Uncertainty representation using fuzzy measures. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 32(1), 13–20.

    Article  Google Scholar 

  • Yager, R., & Zadeh, L. (2012). An introduction to fuzzy logic applications in intelligent systems (Vol. 165). Berlin: Springer Science and Business Media.

    MATH  Google Scholar 

  • Yager, R. R., Zadeh, L. A., Kosko, B., & Grossberg, S. (1994). Fuzzy sets, neural networks, and soft computing (No. 006.33 F8).

    Google Scholar 

  • Yuan, Y. (2013). Forecasting the movement direction of exchange rate with polynomial smooth support vector machine. Mathematical and Computer Modelling, 57(3–4), 932–944.

    Article  MathSciNet  MATH  Google Scholar 

  • Yüksel, I., & Dağdeviren, M. (2010). Using the fuzzy analytic network process (ANP) for Balanced Scorecard (BSC): A case study for a manufacturing firm. Expert Systems with Applications, 37(2), 1270–1278.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy set. Information and Control, 8, 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man, and Cybernetics, 1, 28–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A. (1975). Calculus of fuzzy restrictions. In Fuzzy sets and their applications to cognitive and decision processes (pp. 1–39).

    Google Scholar 

  • Zadeh, L. A. (1990). The birth and evolution of fuzzy logic. International Journal of General System, 17(2–3), 95–105.

    Article  MATH  Google Scholar 

  • Zadeh, L. A. (1993). Fuzzy logic, neural networks and soft computing. In Safety Evaluation Based on Identification Approaches Related to Time-Variant and Nonlinear Structures (pp. 320–321). Vieweg + Teubner Verlag.

    Google Scholar 

  • Zadeh, L. A. (1994). Fuzzy logic and soft computing: Issues, contentions and perspectives. In Proceedings of IIZUKA’94: 3rd International Conference on Fuzzy Logic, Neural Nets and Soft Computing, Iizuka, Japan (pp. 1–2).

    Google Scholar 

  • Zadeh, L. A. (1996). Fuzzy logic, neural networks, and soft computing. In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh (pp. 775–782).

    Google Scholar 

  • Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 100(1), 9–34.

    Article  MathSciNet  Google Scholar 

  • Zadeh, L. A. (2000). Fuzzy sets and fuzzy information-granulation theory: Key selected papers. Beijing: Beijing Normal University Press.

    Google Scholar 

  • Zadeh, L. A. (2001a). Applied soft computing. Applied Soft Computing, 1, 1–2.

    Article  Google Scholar 

  • Zadeh, L. A. (2001b). A new direction in AI: Toward a computational theory of perceptions. AI magazine, 22(1), 73.

    MATH  Google Scholar 

  • Zadeh, L. A. (2005). Toward a generalized theory of uncertainty (GTU)—An outline. Information Sciences, 172(1–2), 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A. (2008). Is there a need for fuzzy logic? Information Sciences, 178(13), 2751–2779.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A., & Desoer, C. (2008). Linear system theory: The state space approach. USA: Courier Dover Publications.

    MATH  Google Scholar 

  • Zadeh, L. A., Fu, K. S., & Tanaka, K. (2014). Fuzzy sets and their applications to cognitive and decision processes. In Proceedings of the US–Japan Seminar on Fuzzy Sets and Their Applications, Held at the University Of California, Berkeley, California. July 1–4, 1974. Academic press.

    Google Scholar 

  • Zeigler, B., Moon, Y., Lopes, V., & Kim, J. (1996). DEVS approximation of infiltration using genetic algorithm optimization of a fuzzy system. Mathematical and Computer Modelling, 23(11–12), 215–228.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, J., Wertz, V., & Gorez, R. (1994). A fuzzy clustering method for the identification of fuzzy models for dynamic systems. In Proceedings of the 1994 IEEE International Symposium on Intelligent Control (pp. 172–177).

    Google Scholar 

  • Zimmermann, H. (1975). Description and optimization of fuzzy systems. International Journal of General System, 2(1), 209–215.

    Article  MATH  Google Scholar 

  • Zimmermann, H. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45–55.

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann, H. (1996). Fuzzy control. In Fuzzy Set Theory—and Its Applications (pp. 203–240).

    Chapter  Google Scholar 

  • Zimmermann, H. (2012). Fuzzy sets, decision making, and expert systems (Vol. 10). Berlin: Springer Science and Business Media.

    Google Scholar 

  • Zimmermann, H., & Zysno, P. (1980). Latent connectives in human decision making. Fuzzy Sets and Systems, 4(1), 37–51.

    Article  MATH  Google Scholar 

  • Zolotukhin, A., & Gudmestad, O. (2002). Application of fuzzy sets theory in qualitative and quantitative risk assessment. International Journal of Offshore and Polar Engineering, 12(4).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Trujillo-Cabezas .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trujillo-Cabezas, R., Verdegay, J.L. (2020). Fuzzy Optimization and Reasoning Approaches. In: Integrating Soft Computing into Strategic Prospective Methods. Studies in Fuzziness and Soft Computing, vol 387. Springer, Cham. https://doi.org/10.1007/978-3-030-25432-2_3

Download citation

Publish with us

Policies and ethics