Constructing Models

  • Raúl Trujillo-CabezasEmail author
  • José Luis Verdegay
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 387)


The literature on Futures Studies shows the need to give the process of inference of the future, guidelines that help to face turbulence and recognize the emerging properties that belong to the dynamics of complex social systems. These systems are always in a state of non-equilibrium. Therefore, from a prospective point of view, a system must have means to monitor and understand the changes that occur in its environment, which in many cases express mega trends, often in conflict with each other. To respond to the challenges, the proposal called Meta-Prospective allows to combine Soft Computing with prospective strategic methods, providing the opportunity to develop strategic intelligence capabilities based on prospective thinking and modeling, but prioritizing the process on the methods to turns the proposal into a humanized model. This chapter develops the proposed called Meta-Prospective.


  1. Aguilar, J., Téran, O., Sánchez, H., de Mesa, J., Cordero, J., & Chávez, D. (2017). Towards a Fuzzy Cognitive Map for Opinion Mining. Procedia Computer Science, 108, 2522–2526.CrossRefGoogle Scholar
  2. Amer, M., Daim, T., & Jetter, A. (2013). A review of scenario planning. Futures, 26, 23–40.CrossRefGoogle Scholar
  3. Amirkhani, A., Mosavi, M., Mohammadi, K., & Papageorgious, E. (2018). A novel hybrid method based on fuzzy cognitive maps and fuzzy clustering algorithms for grading celiac disease. Neural Computing and Applications, 30(5), 1573–1588.CrossRefGoogle Scholar
  4. Anderson, P. (1999). Perspective: Complexity theory and organization science. Organization Science, 10(3), 216–232.CrossRefGoogle Scholar
  5. Axelrod, R. (1976). The cognitive mapping approach to decision making. Structure of Decision, 221–250.Google Scholar
  6. Bachelard, G. (1936). Dans Inquisitions, du surralisme au Front populaire. Facsimil la revue (1936) augm. (s. l. documents indits, Ed.) Paris.Google Scholar
  7. Bales, R. (1950). Interaction process analysis; a method for the study of small groups.Google Scholar
  8. Balogun, O. (2009). Supporting information fusion tasks in emergency command and control domains using a hybrid fuzzy cognitive map and Dempster-Shafer algorithms (Doctoral dissertation). North Carolina Agricultural and Technical State University).Google Scholar
  9. Bauman, Z. (2000). Liquid modernity (Vol. 9).Google Scholar
  10. Bekey, G. A., & Kogan, B. J. (Eds). (2012). Modeling and simulation: Theory and practice: A memorial volume for professor Walter J. Karplus (1927–2001). Berlin: Springer Science and Business Media.Google Scholar
  11. Berger, G. (1957). Sciences humaines et prévision. Revue des Deux Mondes, 1829–1971, 417–426.Google Scholar
  12. Bhatia, N., & Kumar, S. (2015). Prediction of severity of diabetes mellitus using fuzzy cognitive maps. Advances in Life Science and Technology, 29, 71–78.Google Scholar
  13. Birkhoff, G., & Von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 823–843.Google Scholar
  14. Bishop, P., Hines, A., & Collins, T. (2007). The current state of scenario development: an overview of techniques. Foresight, 9(1), 5–25.CrossRefGoogle Scholar
  15. Blondel, M. (1936). L’action.Google Scholar
  16. Bourse, F. (2016, febrero 15–16). Pratiques professionnelles de la prospective/master class. Bogotá.Google Scholar
  17. Carlsson, C., & Fullér, R. (1996). Adaptive fuzzy cognitive maps for hyperknowledge representation in strategy formation process. In Proceedings of the International Panel Conference on Soft and Intelligent Computing (pp. 43–50).Google Scholar
  18. Carvalho, J. (2013). On the semantics and the use of fuzzy cognitive maps and dynamic cognitive maps in social sciences. Fuzzy Sets and Systems, 214, 6–19.MathSciNetCrossRefGoogle Scholar
  19. Carvalho, J., & Tomé, J. (2007). Qualitative optimization of fuzzy causal rule bases using fuzzy boolean nets. Fuzzy Sets and Systems, 158(17), 1931–1946.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Chen, Y., Mazlack, L., Minai, A., & Lu, L. (2015). Inferring causal networks using fuzzy cognitive maps and evolutionary algorithms with application to gene regulatory network reconstruction. Applied Soft Computing, 37, 667–679.CrossRefGoogle Scholar
  21. Conte, R., & Paolucci, M. (2002). Reputation in artificial societies: Social beliefs for social order. Berlin: Springer.Google Scholar
  22. Czarniawska, B. (1997). A four times told tale: Combining narrative and scientific knowledge in organization studies. Organization, 4(1), 7–30.CrossRefGoogle Scholar
  23. Davenport, T., & Harris, J. (2005). Automated decision making comes of age. MIT Sloan Management Review, 46(4), 83–98.Google Scholar
  24. De Franciscis, D. (2014). JFCM: A java library for FuzzyCognitive maps. In Fuzzy Cognitive Maps for Applied Sciences and Engineering (pp. 199–220).Google Scholar
  25. De Jouvenel, B. (1967). arte della congettura. Florencia: Vallecchi Editore.Google Scholar
  26. Diamond, J., McLeod, R., & Pedrycz, W. (1990). A fuzzy cognitive system: Examination of a referential neural architecture. In IJCNN International Joint Conference on IEEE (pp. 617–622).Google Scholar
  27. Dickerson, J., Cox, Z., & Fulmer, A. (1996). FCModeler: Dynamic graph display and fuzzy modeling of regulatory and metabolic maps. Technical Report, Electrical Engineering, Iowa State University, Ames, Iowa. Retrieved from FCModeler:
  28. Dickerson, J., & Kosko, B. (1994). Virtual worlds as fuzzy cognitive maps. Presence: Teleoperators and Virtual Environments, 3(2), 173–189.CrossRefGoogle Scholar
  29. Douali, N., Csaba, H., De Roo, J., Papageorgious, E., & Jaulent, M. (2014). Diagnosis support system based on clinical guidelines: comparison between case-based fuzzy cognitive maps and Bayesian networks. Computer Methods and Programs in Biomedicine, 113(1), 133–143.CrossRefGoogle Scholar
  30. Downing, D. (2009). Dictionary of mathematics terms (3rd ed.). New York: Barron’s Educational Series Inc.Google Scholar
  31. Doyle, J., & Ford, D. (1999). Mental models concepts revisited: some clarifications and a reply to Lane. System Dynamics Review: The Journal of the System Dynamics Society, 15(4), 411–415.CrossRefGoogle Scholar
  32. Dubois, D., & Prade, H. (2012). Fundamentals of fuzzy sets (Vol. 7). Berlin: Springer Science and Business Media.Google Scholar
  33. Dufva, M., Könnölä, T., & Koivisto, R. (2015). Multi-layered foresight: Lessons from regional foresight in Chile. Futures, 73, 100–111.CrossRefGoogle Scholar
  34. Durance, P. (2010). Reciprocal influences in future thinking between Europe and the USA. Technological Forecasting and Social Change, 77(9), 1469–1475.CrossRefGoogle Scholar
  35. Fenton, N., & Wang, W. (2006). Risk and confidence analysis for fuzzy multicriteria decision making. Knowledge-Based Systems, 19(6), 430–437.CrossRefGoogle Scholar
  36. Forrest, C. (2009). A system-based, qualitative inference method of heuristics for foresight and futures studies (Doctoral dissertation). Leeds Metropolitan University.Google Scholar
  37. Forrester, J. (1969). Urban dynamics. Waltham, Pegasus: Pegasus Communications.Google Scholar
  38. Forrester, J. (1975). Collected papers of Jay W. Forrester.Google Scholar
  39. Forrester, J. (1993). System dynamics and the lessons of 35 years. A systems-based approach to policymaking (pp. 199–240). Boston: Springer.CrossRefGoogle Scholar
  40. Froelich, W., Papageorgious, E., Samarinas, M., & Skriapas, K. (2012). Application of evolutionary fuzzy cognitive maps to the long-term prediction of prostate cancer. Applied Soft Computing, 12(12), 3810–3817.CrossRefGoogle Scholar
  41. Froelich, W., & Wakulicz-Deja, A. (2009). Mining temporal medical data using adaptive fuzzy cognitive maps. In IEEE Human System Interactions (HSI’09), 2nd Conference (pp. 16–23).Google Scholar
  42. Gelatt, H. (1993). Future sense: Creating the future. The Futurist, 27(5), 9–13.Google Scholar
  43. Giaoutzi, M., & Sapio, B. (2012). Recent developments in foresight methodologies (Vol. 1). Berlin: Springer Science and Business Media.Google Scholar
  44. Glykas, M. (2013). Fuzzy cognitive strategic maps in business process performance measurement. Expert Systems with Applications, 40(1), 1–14.CrossRefGoogle Scholar
  45. Godet, M. (1985). Prospective et planification stratégique. Paris: Editions CNAM.Google Scholar
  46. Godet, M. (1986). Introduction to la prospective: seven key ideas and one scenario method. Futures, 18(2), 134–157.CrossRefGoogle Scholar
  47. Godet, M. (1990a). From anticipation to action—A handbook of strategic prospective. UNESCO.Google Scholar
  48. Godet, M. (1990b). Integration of scenarios and strategic management: using relevant, consistent and likely scenarios. Futures, 22(7), 730–739.CrossRefGoogle Scholar
  49. Godet, M. (1995). Estrategia y Gestión Competitiva, De la anticipación de la acción: Manual de Prospectiva y Estrategia. (Alfaomega, Ed.).Google Scholar
  50. Godet, M. (1995b). How to be rigorous with scenario planning. Foresight, 2(1), 5–9.CrossRefGoogle Scholar
  51. Godet, M. (2000). The art of scenarios and strategic planning: tools and pitfalls. Technological Forecasting and Social Change, 65(1), 3–22.CrossRefGoogle Scholar
  52. Godet, M., Monti, R., Meunier, F., & Roubelat, F. (1999). Scenarios and Strategies: A toolbox for Scenario planning. Paris: Librairie des Arts et Meiters.Google Scholar
  53. Godet, M., & Roubelat, F. (1996). Creating the future: The use and misuse of scenarios. Long Range Plan, 29(2), 164–171.Google Scholar
  54. Goffman, E. (1967). On face-work. In Interaction ritual (pp. 5–45).CrossRefGoogle Scholar
  55. Goldman, A., Hartman, J., Fisher, J., & Sarel, S. (2004). U.S. Patente nº Patent No. 6,820,070.Google Scholar
  56. Gordon, T., & Greenspan, D. (1994). The management of chaotic systems. Technological Forecasting and Social Change, 47(1), 49–62.CrossRefGoogle Scholar
  57. Gosavi, A. (2003). Simulation-based optimization. parametric optimization techniques and reinforcement learning. Berlin: Springer.Google Scholar
  58. Groumpos, P., & Stylios, C. (2000). Modelling supervisory control systems using fuzzy cognitive maps (Vol. 11). Chaos: Solitons and Fractals.Google Scholar
  59. Gupta, S. (2017). Modeling economic system using fuzzy cognitive maps. International Journal of System Assurance Engineering and Management, 8(2), 1472–1486.CrossRefGoogle Scholar
  60. Hagens, T. (2006). Conscience collective or false consciousness? Adorno’s critique of Durkheim’s sociology of morals. Journal of Classical Sociology, 6(2), 215–237.CrossRefGoogle Scholar
  61. Hamel, G., & Valikangas, L. (2004). The quest for resilience. Revista Icade. La Revista de las Facultades de Derecho y Ciencias Económicas y Empresariales, 62, 355–358.Google Scholar
  62. Hansen, M., Rasmussen, L., & Jacobsen, P. (2016). Interactive foresight simulation. Technological Forecasting and Social Change, 103, 214–227.CrossRefGoogle Scholar
  63. Hazlitt, W. (1805). An essay on the principles of human action: Being an Argument in Favour of the Natural Disinterestedness of the Human Mind. J. Johnson.Google Scholar
  64. Hines, A. (2003). An audit for organizational futurists: ten questions every organizational futurist should be able to answer. Foresight, 5(1), 20–33.CrossRefGoogle Scholar
  65. Hines, A., and Bishop, P. (2006). Thinking about the future: Guidelines for strategic foresight. Washington D.C.: Social Technologies.Google Scholar
  66. Hines, A., & Gold, J. (2015). An organizational futurist role for integrating foresight into corporations. Technological Forecasting and Social Change, 101, 99–111.CrossRefGoogle Scholar
  67. Hossain, S., & Brooks, L. (2008). Fuzzy cognitive map modelling educational software adoption. Computers & Education, 51(4), 1569–1588.CrossRefGoogle Scholar
  68. Jetter, A., & Kok, K. (2014). Fuzzy Cognitive Maps for futures studies—A methodological assessment of concepts and methods. Futures, 61, 45–57.CrossRefGoogle Scholar
  69. Jetter, A., & Schweinfort, W. (2011). Building scenarios with fuzzy cognitive maps: An exploratory study of solar energy. Futures, 43(1), 52–66.CrossRefGoogle Scholar
  70. Jones, B. (2002). Bounded rationality and public policyand the decisional foundation of collective choice. Policy Sciences, 35(3), 269–284.CrossRefGoogle Scholar
  71. Jose, A., & Contreras, J. (2010). The FCM designer tool. Fuzzy cognitive maps (pp. 71–87). Berlin: Springer.CrossRefGoogle Scholar
  72. Kaboli, S., & Tapio, P. (2018). How late-modern nomads imagine tomorrow? A causal layered analysis practice to explore the images of the future of young adults. Futures, 96, 32–43.CrossRefGoogle Scholar
  73. Kandasamy, W., & Indra, V. (2000). Applications of fuzzy cognitive maps to determine the maximum utility of a route. Journal of Fuzzy Mathematics, 8, 65–77.zbMATHGoogle Scholar
  74. Kannappan, A., & Papageorgious, E. (2013). A new classification scheme using artificial immune systems learning for fuzzy cognitive mapping. In International Conference on Fuzzy Systems (FUZZ) (pp. 1–8). IEEE.Google Scholar
  75. Kant, I. (1871). Kritik der reinen Vernunft.Google Scholar
  76. Karlsen, J., & Karlsen, H. (2013). Classification of tools and approaches applicable in foresight studies. In Recent developments in foresight methodologies (pp. 27–52). Boston, MA: Springer.Google Scholar
  77. Karplus, W. (1958). Analog simulation: Solution of field problems. New York: McGraw-Hill.Google Scholar
  78. Karplus, W. (1964). Design and error analysis of high-accuracy dc voltage-measuring systems. IEEE Transactions on Instrumentation and Measurement, 13(2), 139–145.CrossRefGoogle Scholar
  79. Karplus, W. (1977). The spectrum of mathematical modeling and systems simulation. Mathematics and Computers in Simulation, 19(1), 3–10.CrossRefGoogle Scholar
  80. Khan, M., Chong, A., & Gedeon, T. (2000). A methodology for developing adaptive fuzzy cognitive maps for decision support. Jaciii, 4(6), 403–407.CrossRefGoogle Scholar
  81. Khan, M., & Quaddus, M. (2004). Group decision support using fuzzy cognitive maps for causal reasoning. Group Decision and Negotiation, 13(5), 463–480.CrossRefGoogle Scholar
  82. Kok, K. (2009). The potential of fuzzy cognitive maps for semi-quantitative scenario development, with an example from Brazil. Global Environmental Change, 19(1), 122–133.CrossRefGoogle Scholar
  83. Kosko, B. (1998). Global stability of generalized additive fuzzy systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 28(3), 441–452.CrossRefGoogle Scholar
  84. Kosko, B. (1999). The fuzzy future: From society and science to heaven in a chip. Harmony.Google Scholar
  85. Kosko, B., & Toms, M. (1993). Fuzzy thinking: The new science of fuzzy logic. New York: Hyperion.Google Scholar
  86. Kosow,, H., & Gaßner, R. (2008). Methods of future and scenario analysis: Overview, assessment, and selection criteria (Vol. 39). Deutschland.Google Scholar
  87. Kreibich, R. (2006). Zukunftsforschung. Arbeitsbericht Nr. 23/2006. Berlin: Institute for Future Studies and Technology Assessment (in German).Google Scholar
  88. Krohling, R., & de Souza, T. (2012). Combining prospect theory and fuzzy numbers to multi-criteria decision making. Expert Systems with Applications, 39(13), 11487–11493.CrossRefGoogle Scholar
  89. Kuosa, T. (2013). Forms of reasoning in Pattern management and in strategic intelligence. In Recent developments in foresight methodologies (pp. 93–107). Boston, MA: Springer.Google Scholar
  90. Lee, K., Kim, J., Chung, N., & Kwon, S. (2002). Fuzzy cognitive map approach to web-mining inference amplification. Expert Systems with Applications, 22(3), 197–211.CrossRefGoogle Scholar
  91. León, M., Rodriguez, C., García, M., Bello, R., & Vanhoof, K. (2010). Fuzzy cognitive maps for modeling complex systems. In Mexican International Conference on Artificial Intelligence (pp. 166–174).Google Scholar
  92. Lettner, M., Schöggl, J., & Stern, T. (2017). Factors influencing the market diffusion of bio-based plastics: Results of four comparative scenario analyses. Journal of Cleaner Production, 157, 289–298.CrossRefGoogle Scholar
  93. Levi, M., Boudon, R., & Olson, M. (1978). Logique de l’action collective. Presses universitaires de France.Google Scholar
  94. Lissack, M. (1999). Complexity: The science, its vocabulary, and its relation to organizations. Emergence, 1(1), 110–126.CrossRefGoogle Scholar
  95. Liu, Z., & Satur, R. (1999). Contextual fuzzy cognitive map for decision support in geographic information systems. IEEE Transactions on Fuzzy Systems, 7(5), 495–507.CrossRefGoogle Scholar
  96. Mago, V. K., Bakker, L., Papageorgious, E. I., Alimadad, A., & Borwein, P. (2012). Fuzzy cognitive maps and cellular automata: An evolutionary approach for social systems modelling. Applied Soft Computing, 12(12), 3771–3784.CrossRefGoogle Scholar
  97. Mahdavi, I., Mahdavi-Amiri, N., Heidarzade, A., & Nourifar, R. (2008). Designing a model of fuzzy TOPSIS in multiple criteria decision making. Applied Mathematics and Computation, 206(2), 607–617.MathSciNetzbMATHCrossRefGoogle Scholar
  98. Mandelbrot, B. (1967). How long is the coast of Britain. Science, 636–638.CrossRefGoogle Scholar
  99. Mandelbrot, B. (1974). Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. Journal of Fluid Mechanics, 331–358.zbMATHCrossRefGoogle Scholar
  100. Mandelbrot, B. (1977). Fractals. John Wiley and Sons, Inc.Google Scholar
  101. Mandelbrot, B. (1996). Del azar benigno al azar salvaje. Investigación y ciencia, 243, 14–20.Google Scholar
  102. Mandelbrot, B. B. (1983). The fractal geometry of nature (Vol. 173, p. 51). New York: WH freeman.Google Scholar
  103. Marien, M. (2002). Futures studies in the 21st century: A reality-based view. Futures, 34(3–4), 261–281.CrossRefGoogle Scholar
  104. Massé, P. (1964). Les principes de la planification française. Weltwirtschaftliches ArchivGoogle Scholar
  105. Maturana, H., Varela, F., & Behncke, R. (1984). El árbol del conocimiento: las bases biológicas del entendimiento humano (Vol. 1). Organización de Estados Americanos, OEA.Google Scholar
  106. Mendonça, S., Cunha, M., Kaivo-Oja, J., & Ruff, F. (2004). Wild cards, weak signals and organisational improvisation. Futures, 36(2), 201–2018.CrossRefGoogle Scholar
  107. Miao, Y., Liu, Z., Siew, C., & Miao, C. (2001). Dynamical cognitive network—An extension of fuzzy cognitive map. IEEE Transactions on Fuzzy Systems, 9(5), 760–770.CrossRefGoogle Scholar
  108. Minati, G., Abram, M., & Pessa, E. (2016). Towards a post-Bertalanffy systemics. Berlin: Springer.Google Scholar
  109. Minati, G., & Pessa, E. (2006). Collective beings. Berlin: Springer Science and Business Media.Google Scholar
  110. Morin, E. (2008). Autobiografía de Edgar Morin. Retrieved octubre 2, 2017, from Comunidad de Pensamiento Complejo:
  111. Neisser, U. (1967). Cognitive psychology. Appleton-Century-Crofts.Google Scholar
  112. Novák, V., Perfilieva, I., & Mockor, J. (2012). Mathematical principles of fuzzy logic (Vol. 517). Berlin: Springer Science and Business Media.Google Scholar
  113. Obiedat, M., & Samarasinghe, S. (2011). A new method for identifying the central nodes in fuzzy cognitive maps using consensus centrality measure.Google Scholar
  114. Olson, M. (1965). The logic of collective action: Public goods and the theory of group.Google Scholar
  115. Papageorgious, I. (2012). Learning algorithms for fuzzy cognitive maps—a review study. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(2), 150–163.CrossRefGoogle Scholar
  116. Papageorgious, E., Hatwágner, M., Buruzs, A., & Kóczy, L. (2017). A concept reduction approach for fuzzy cognitive map models in decision making and management. Neurocomputing, 232, 16–33.CrossRefGoogle Scholar
  117. Papageorgious, E., Spyridonos, P., Glotsos, D., Stylios, C., Ravazoula, P., Nikiforidis, G., et al. (2008). Brain tumor characterization using the soft computing technique of fuzzy cognitive maps. Applied Soft Computing, 8(1), 820–828.CrossRefGoogle Scholar
  118. Papageorgious, E., & Stylios, C. (2008). Fuzzy cognitive maps. In Handbook of granular computing (pp. 755–774).Google Scholar
  119. Papageourgious, E. (2011). A new methodology for decisions in medical informatics using fuzzy cognitive maps based on fuzzy rule-extraction techniques. Applied Soft Computing, 11(1), 500–513.CrossRefGoogle Scholar
  120. Papakosta, G., Koulouriotis, D., Polydoros, A., & Tourassis, V. (2012). Towards Hebbian learning of fuzzy cognitive maps in pattern classification problems. Expert Systems with Applications, 39(12), 10620–10629.CrossRefGoogle Scholar
  121. Park, K., & Kim, S. (1995). Fuzzy cognitive maps considering time relationships. International Journal of Human-Computer Studies, 42(2), 157–168.CrossRefGoogle Scholar
  122. Parsons, T., & Shils, E. (1951). Toward a general theory of action. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  123. Pessa, E. (2000). Cognitive modelling and dynamical systems theory. La Nuova Critica, 1(35), 53–94.Google Scholar
  124. Popper, R. (2011). 21st century foresight (Doctoral dissertation). University of Manchester.Google Scholar
  125. Prigogine, I., & Stengers, I. (1997). The end of certainty. Simon and Schuster.Google Scholar
  126. Ragin, C. (2009). Qualitative comparative analysis using fuzzy sets (fsQCA). In Configurational comparative methods (Vol. 51).Google Scholar
  127. Régnier, F. (1989). Annoncer la couleur.Google Scholar
  128. Rezaee, M., Yousefi, S., & Hayati, J. (2018). A decision system using fuzzy cognitive map and multi-group data envelopment analysis to estimate hospitals’ outputs level. Neural Computing and Applications, 29(3), 761–777.CrossRefGoogle Scholar
  129. Rohrbeck, R., & Gemünden, H. (2011). Corporate foresight: Its three roles in enhancing the innovation capacity of a firm. Technological Forecasting and Social Change, 78(2), 231–243.CrossRefGoogle Scholar
  130. Roubelat, F. (1996). La prospective stratégique en perspective: genèse, études de cas, prospective (Doctoral dissertation).Google Scholar
  131. Roubelat, F. (2000). Scenario planning as a networking process. Technological Forecasting and Social Change, 65(1), 99–112.CrossRefGoogle Scholar
  132. Salmeron, J. (2009). Augmented fuzzy cognitive maps for modelling LMS critical success factors. Knowledge-Based Systems, 22(4), 275–278.CrossRefGoogle Scholar
  133. Salmeron, J., & Papageorgious, E. (2012). A fuzzy grey cognitive maps-based decision support system for radiotherapy treatment planning. Knowledge-Based Systems, 30, 151–160.CrossRefGoogle Scholar
  134. Shannon, C. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.MathSciNetzbMATHCrossRefGoogle Scholar
  135. Shannon, C., & Weaver, W. (1949). The mathematical theory of communication. Illinois, EEUU: Urbana.zbMATHGoogle Scholar
  136. Simon, H. (1996). The sciences of the artificial. Cambridge: MIT Press.Google Scholar
  137. Simon, H. (1997). Models of bounded rationality: Empirically grounded economic reason (Vol. 3). Cambridge: MIT Press.Google Scholar
  138. Slaughter, R. (1991). Changing images of futures in the 20th century. Futures, 23(5), 499–515.CrossRefGoogle Scholar
  139. Son, H. (2015). The history of Western futures studies: An exploration of the intellectual traditions and three-phase periodization. Futures, 66, 120–137.CrossRefGoogle Scholar
  140. Štula, M., Maras, J., & Mladenović, S. (2017). Continuously self-adjusting fuzzy cognitive map with semi-autonomous concepts. Neurocomputing, 232, 34–51.CrossRefGoogle Scholar
  141. Stylios, C., Georgopoulos, V., & Groumpos, P. (1997). Introducing the theory of fuzzy cognitive maps in distributed systems. In Proceedings of the 1997 IEEE International Symposium on Intelligent Control (pp. 55–60).Google Scholar
  142. Stylios, C., and Groumpos, P. (2000). Fuzzy cognitive maps: A soft computing technique for intelligent control. In Proceedings of the 2000 IEEE International Symposium on Intelligent Control.Google Scholar
  143. Stylos, C., & Groumpos, P. (2004). Modeling complex systems using fuzzy cognitive maps. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 34(1), 155–162.CrossRefGoogle Scholar
  144. Sun, B., & Ma, W. (2011). Fuzzy rough set model on two different universes and its application. Applied Mathematical Modelling, 35(4), 1798–1809.MathSciNetzbMATHCrossRefGoogle Scholar
  145. Syau, Y. (1999a). On convex and concave fuzzy mappings. Fuzzy Sets and Systems, 103(1), 163–168.MathSciNetzbMATHCrossRefGoogle Scholar
  146. Syau, Y. (1999b). Preinvex fuzzy mappings. Computers and Mathematics with Applications, 37(3), 31–39.MathSciNetzbMATHCrossRefGoogle Scholar
  147. Taber, R. (1991). Knowledge processing with fuzzy cognitive maps. Expert Systems with Applications, 2(1), 83–87.CrossRefGoogle Scholar
  148. Touraine, A. (1984). Le retour de l’acteur: essai de sociologie.Google Scholar
  149. Touraine, A. (1998). Sociology: from systems to actors. In Lecture was presented at Session 2 of Symposium YI. ISA Congress in Montreal.Google Scholar
  150. Tsadiras, A., & Bassiliades, N. (2013). RuleML representation and simulation of fuzzy cognitive maps. Expert Systems with Applications, 40(5), 1413–1426.CrossRefGoogle Scholar
  151. Tsadiras, A., & Margaritis, K. (2007). A new balance degree for fuzzy cognitive maps. In E. s. techniques.Google Scholar
  152. Tzeng, G., & Huang, J. (2011). Multiple attribute decision making: methods and applications. Boca Raton: Chapman and Hall/CRC.Google Scholar
  153. Vacum, C. A., & Melo, C. (2010). Directions in scenario planning literature—A review of the past decades. Futures, 42(4), 355–369.Google Scholar
  154. Van der Laan, L., & Yap, J. (2016). Foresight and Strategy in the Asia Pacific Region. Singapore: Springer.CrossRefGoogle Scholar
  155. Van Notten, P. W., Rotmans, J., Van Asselt, M. B., & Rothman, D. S. (2003). An updated scenario typology., 35(5), 423–443.Google Scholar
  156. Varela, F., & Maturana, H. (1972). Mechanism and biological explanation. Philosophy of Science, 39(3), 378–382.CrossRefGoogle Scholar
  157. Vasslides, J., & Jensen, O. (2016). Fuzzy cognitive mapping in support of integrated ecosystem assessments: Developing a shared conceptual model among stakeholders. Journal of Environmental Management, 166, 348–356.CrossRefGoogle Scholar
  158. Vecchiato, R. (2015). Creating value through foresight: First mover advantages and strategic agility. Technological Forecasting and Social Change, 101, 25–36.CrossRefGoogle Scholar
  159. Vidal, R. (2011). El giro epistemológico hermenéutico en la última tradición científica moderna. Cinta de moebio, 40, 22–46.CrossRefGoogle Scholar
  160. Von Foerster, H. (1949). Quantum mechanical theory of memory. Cybernetics: Circular Causal, and Feedback Mechanisms in Biological and Social Systems. Josiah Macy Jr. Foundation, 112–145.Google Scholar
  161. Von Foerster, H. (1995). Ethics and second-order cybernetics. Stanford Humanities Review, 4(2), 308–319.Google Scholar
  162. Von Foerster, H. (2003). Cybernetics of cybernetics. In Understanding understanding: Essays on cybernetics and cognition (pp. 283–286).Google Scholar
  163. Von Neumann, J. (1951). The general and logical theory of automata. Cerebral mechanisms in behavior, 1(41), 1–2.MathSciNetGoogle Scholar
  164. Von Neumann, J. (1955). Mathematical foundations of quantum mechanics (No. 2) (Vol. 2). Princeton: Princeton University Press.Google Scholar
  165. Von Neumann, J., & Burks, A. (1966). Theory of self-reproducing automata. IEEE Transactions on Neural Networks, 5(1), 3–14.Google Scholar
  166. Von Neumann, J., & Morgenstern, O. (1945). Theory of games and economic behavior. Bulletin of the American Mathematical Society, 51(7), 498–504.Google Scholar
  167. Wright, G., & Goodwin, P. (2009). Decision making and planning under low levels of predictability: Enhancing the scenario method. International Journal of Forecasting, 25(4), 813–825.CrossRefGoogle Scholar
  168. Xirogiannis, G., Glykas, M., & Staikouras, C. (2010). Fuzzy cognitive maps in banking business process performance measurement. Fuzzy cognitive maps (pp. 161–200). Berlin: Springer.CrossRefGoogle Scholar
  169. Yang, W., Wang, J., & Wang, X. (2012). An outranking method for multi-criteria decision making with duplex linguistic information. Fuzzy Sets and Systems, 198, 20–33.MathSciNetzbMATHCrossRefGoogle Scholar
  170. Yin, R. (1989). Case study research: Design and methods, revised edition. Applied Social Research Methods Series, 5.Google Scholar
  171. Zimmermann, H. (2012). Fuzzy sets, decision making, and expert systems (Vol. 10). Berlin: Springer Science and Business Media.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of ManagementUniversidad Externado de ColombiaBogotáColombia
  2. 2.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations