Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 387))

Abstract

The literature on Futures Studies shows the need to give the process of inference of the future, guidelines that help to face turbulence and recognize the emerging properties that belong to the dynamics of complex social systems. These systems are always in a state of non-equilibrium. Therefore, from a prospective point of view, a system must have means to monitor and understand the changes that occur in its environment, which in many cases express mega trends, often in conflict with each other. To respond to the challenges, the proposal called Meta-Prospective allows to combine Soft Computing with prospective strategic methods, providing the opportunity to develop strategic intelligence capabilities based on prospective thinking and modeling, but prioritizing the process on the methods to turns the proposal into a humanized model. This chapter develops the proposed called Meta-Prospective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Original text in Spanish version.

  2. 2.

    idem.

  3. 3.

    Original text in Spanish version.

References

  • Aguilar, J., Téran, O., Sánchez, H., de Mesa, J., Cordero, J., & Chávez, D. (2017). Towards a Fuzzy Cognitive Map for Opinion Mining. Procedia Computer Science, 108, 2522–2526.

    Article  Google Scholar 

  • Amer, M., Daim, T., & Jetter, A. (2013). A review of scenario planning. Futures, 26, 23–40.

    Article  Google Scholar 

  • Amirkhani, A., Mosavi, M., Mohammadi, K., & Papageorgious, E. (2018). A novel hybrid method based on fuzzy cognitive maps and fuzzy clustering algorithms for grading celiac disease. Neural Computing and Applications, 30(5), 1573–1588.

    Article  Google Scholar 

  • Anderson, P. (1999). Perspective: Complexity theory and organization science. Organization Science, 10(3), 216–232.

    Article  Google Scholar 

  • Axelrod, R. (1976). The cognitive mapping approach to decision making. Structure of Decision, 221–250.

    Google Scholar 

  • Bachelard, G. (1936). Dans Inquisitions, du surralisme au Front populaire. Facsimil la revue (1936) augm. (s. l. documents indits, Ed.) Paris.

    Google Scholar 

  • Bales, R. (1950). Interaction process analysis; a method for the study of small groups.

    Google Scholar 

  • Balogun, O. (2009). Supporting information fusion tasks in emergency command and control domains using a hybrid fuzzy cognitive map and Dempster-Shafer algorithms (Doctoral dissertation). North Carolina Agricultural and Technical State University).

    Google Scholar 

  • Bauman, Z. (2000). Liquid modernity (Vol. 9).

    Google Scholar 

  • Bekey, G. A., & Kogan, B. J. (Eds). (2012). Modeling and simulation: Theory and practice: A memorial volume for professor Walter J. Karplus (1927–2001). Berlin: Springer Science and Business Media.

    Google Scholar 

  • Berger, G. (1957). Sciences humaines et prévision. Revue des Deux Mondes, 1829–1971, 417–426.

    Google Scholar 

  • Bhatia, N., & Kumar, S. (2015). Prediction of severity of diabetes mellitus using fuzzy cognitive maps. Advances in Life Science and Technology, 29, 71–78.

    Google Scholar 

  • Birkhoff, G., & Von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 823–843.

    Google Scholar 

  • Bishop, P., Hines, A., & Collins, T. (2007). The current state of scenario development: an overview of techniques. Foresight, 9(1), 5–25.

    Article  Google Scholar 

  • Blondel, M. (1936). L’action.

    Google Scholar 

  • Bourse, F. (2016, febrero 15–16). Pratiques professionnelles de la prospective/master class. Bogotá.

    Google Scholar 

  • Carlsson, C., & Fullér, R. (1996). Adaptive fuzzy cognitive maps for hyperknowledge representation in strategy formation process. In Proceedings of the International Panel Conference on Soft and Intelligent Computing (pp. 43–50).

    Google Scholar 

  • Carvalho, J. (2013). On the semantics and the use of fuzzy cognitive maps and dynamic cognitive maps in social sciences. Fuzzy Sets and Systems, 214, 6–19.

    Article  MathSciNet  Google Scholar 

  • Carvalho, J., & Tomé, J. (2007). Qualitative optimization of fuzzy causal rule bases using fuzzy boolean nets. Fuzzy Sets and Systems, 158(17), 1931–1946.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y., Mazlack, L., Minai, A., & Lu, L. (2015). Inferring causal networks using fuzzy cognitive maps and evolutionary algorithms with application to gene regulatory network reconstruction. Applied Soft Computing, 37, 667–679.

    Article  Google Scholar 

  • Conte, R., & Paolucci, M. (2002). Reputation in artificial societies: Social beliefs for social order. Berlin: Springer.

    Google Scholar 

  • Czarniawska, B. (1997). A four times told tale: Combining narrative and scientific knowledge in organization studies. Organization, 4(1), 7–30.

    Article  Google Scholar 

  • Davenport, T., & Harris, J. (2005). Automated decision making comes of age. MIT Sloan Management Review, 46(4), 83–98.

    Google Scholar 

  • De Franciscis, D. (2014). JFCM: A java library for FuzzyCognitive maps. In Fuzzy Cognitive Maps for Applied Sciences and Engineering (pp. 199–220).

    Google Scholar 

  • De Jouvenel, B. (1967). arte della congettura. Florencia: Vallecchi Editore.

    Google Scholar 

  • Diamond, J., McLeod, R., & Pedrycz, W. (1990). A fuzzy cognitive system: Examination of a referential neural architecture. In IJCNN International Joint Conference on IEEE (pp. 617–622).

    Google Scholar 

  • Dickerson, J., Cox, Z., & Fulmer, A. (1996). FCModeler: Dynamic graph display and fuzzy modeling of regulatory and metabolic maps. Technical Report, Electrical Engineering, Iowa State University, Ames, Iowa. Retrieved from FCModeler: http://www.ismb02.org/posters/poster/Dickerson.pdf.

  • Dickerson, J., & Kosko, B. (1994). Virtual worlds as fuzzy cognitive maps. Presence: Teleoperators and Virtual Environments, 3(2), 173–189.

    Article  Google Scholar 

  • Douali, N., Csaba, H., De Roo, J., Papageorgious, E., & Jaulent, M. (2014). Diagnosis support system based on clinical guidelines: comparison between case-based fuzzy cognitive maps and Bayesian networks. Computer Methods and Programs in Biomedicine, 113(1), 133–143.

    Article  Google Scholar 

  • Downing, D. (2009). Dictionary of mathematics terms (3rd ed.). New York: Barron’s Educational Series Inc.

    Google Scholar 

  • Doyle, J., & Ford, D. (1999). Mental models concepts revisited: some clarifications and a reply to Lane. System Dynamics Review: The Journal of the System Dynamics Society, 15(4), 411–415.

    Article  Google Scholar 

  • Dubois, D., & Prade, H. (2012). Fundamentals of fuzzy sets (Vol. 7). Berlin: Springer Science and Business Media.

    Google Scholar 

  • Dufva, M., Könnölä, T., & Koivisto, R. (2015). Multi-layered foresight: Lessons from regional foresight in Chile. Futures, 73, 100–111.

    Article  Google Scholar 

  • Durance, P. (2010). Reciprocal influences in future thinking between Europe and the USA. Technological Forecasting and Social Change, 77(9), 1469–1475.

    Article  Google Scholar 

  • Fenton, N., & Wang, W. (2006). Risk and confidence analysis for fuzzy multicriteria decision making. Knowledge-Based Systems, 19(6), 430–437.

    Article  Google Scholar 

  • Forrest, C. (2009). A system-based, qualitative inference method of heuristics for foresight and futures studies (Doctoral dissertation). Leeds Metropolitan University.

    Google Scholar 

  • Forrester, J. (1969). Urban dynamics. Waltham, Pegasus: Pegasus Communications.

    Google Scholar 

  • Forrester, J. (1975). Collected papers of Jay W. Forrester.

    Google Scholar 

  • Forrester, J. (1993). System dynamics and the lessons of 35 years. A systems-based approach to policymaking (pp. 199–240). Boston: Springer.

    Chapter  Google Scholar 

  • Froelich, W., Papageorgious, E., Samarinas, M., & Skriapas, K. (2012). Application of evolutionary fuzzy cognitive maps to the long-term prediction of prostate cancer. Applied Soft Computing, 12(12), 3810–3817.

    Article  Google Scholar 

  • Froelich, W., & Wakulicz-Deja, A. (2009). Mining temporal medical data using adaptive fuzzy cognitive maps. In IEEE Human System Interactions (HSI’09), 2nd Conference (pp. 16–23).

    Google Scholar 

  • Gelatt, H. (1993). Future sense: Creating the future. The Futurist, 27(5), 9–13.

    Google Scholar 

  • Giaoutzi, M., & Sapio, B. (2012). Recent developments in foresight methodologies (Vol. 1). Berlin: Springer Science and Business Media.

    Google Scholar 

  • Glykas, M. (2013). Fuzzy cognitive strategic maps in business process performance measurement. Expert Systems with Applications, 40(1), 1–14.

    Article  Google Scholar 

  • Godet, M. (1985). Prospective et planification stratégique. Paris: Editions CNAM.

    Google Scholar 

  • Godet, M. (1986). Introduction to la prospective: seven key ideas and one scenario method. Futures, 18(2), 134–157.

    Article  Google Scholar 

  • Godet, M. (1990a). From anticipation to action—A handbook of strategic prospective. UNESCO.

    Google Scholar 

  • Godet, M. (1990b). Integration of scenarios and strategic management: using relevant, consistent and likely scenarios. Futures, 22(7), 730–739.

    Article  Google Scholar 

  • Godet, M. (1995). Estrategia y Gestión Competitiva, De la anticipación de la acción: Manual de Prospectiva y Estrategia. (Alfaomega, Ed.).

    Google Scholar 

  • Godet, M. (1995b). How to be rigorous with scenario planning. Foresight, 2(1), 5–9.

    Article  Google Scholar 

  • Godet, M. (2000). The art of scenarios and strategic planning: tools and pitfalls. Technological Forecasting and Social Change, 65(1), 3–22.

    Article  Google Scholar 

  • Godet, M., Monti, R., Meunier, F., & Roubelat, F. (1999). Scenarios and Strategies: A toolbox for Scenario planning. Paris: Librairie des Arts et Meiters.

    Google Scholar 

  • Godet, M., & Roubelat, F. (1996). Creating the future: The use and misuse of scenarios. Long Range Plan, 29(2), 164–171.

    Google Scholar 

  • Goffman, E. (1967). On face-work. In Interaction ritual (pp. 5–45).

    Chapter  Google Scholar 

  • Goldman, A., Hartman, J., Fisher, J., & Sarel, S. (2004). U.S. Patente nº Patent No. 6,820,070.

    Google Scholar 

  • Gordon, T., & Greenspan, D. (1994). The management of chaotic systems. Technological Forecasting and Social Change, 47(1), 49–62.

    Article  Google Scholar 

  • Gosavi, A. (2003). Simulation-based optimization. parametric optimization techniques and reinforcement learning. Berlin: Springer.

    Google Scholar 

  • Groumpos, P., & Stylios, C. (2000). Modelling supervisory control systems using fuzzy cognitive maps (Vol. 11). Chaos: Solitons and Fractals.

    Google Scholar 

  • Gupta, S. (2017). Modeling economic system using fuzzy cognitive maps. International Journal of System Assurance Engineering and Management, 8(2), 1472–1486.

    Article  Google Scholar 

  • Hagens, T. (2006). Conscience collective or false consciousness? Adorno’s critique of Durkheim’s sociology of morals. Journal of Classical Sociology, 6(2), 215–237.

    Article  Google Scholar 

  • Hamel, G., & Valikangas, L. (2004). The quest for resilience. Revista Icade. La Revista de las Facultades de Derecho y Ciencias Económicas y Empresariales, 62, 355–358.

    Google Scholar 

  • Hansen, M., Rasmussen, L., & Jacobsen, P. (2016). Interactive foresight simulation. Technological Forecasting and Social Change, 103, 214–227.

    Article  Google Scholar 

  • Hazlitt, W. (1805). An essay on the principles of human action: Being an Argument in Favour of the Natural Disinterestedness of the Human Mind. J. Johnson.

    Google Scholar 

  • Hines, A. (2003). An audit for organizational futurists: ten questions every organizational futurist should be able to answer. Foresight, 5(1), 20–33.

    Article  Google Scholar 

  • Hines, A., and Bishop, P. (2006). Thinking about the future: Guidelines for strategic foresight. Washington D.C.: Social Technologies.

    Google Scholar 

  • Hines, A., & Gold, J. (2015). An organizational futurist role for integrating foresight into corporations. Technological Forecasting and Social Change, 101, 99–111.

    Article  Google Scholar 

  • Hossain, S., & Brooks, L. (2008). Fuzzy cognitive map modelling educational software adoption. Computers & Education, 51(4), 1569–1588.

    Article  Google Scholar 

  • Jetter, A., & Kok, K. (2014). Fuzzy Cognitive Maps for futures studies—A methodological assessment of concepts and methods. Futures, 61, 45–57.

    Article  Google Scholar 

  • Jetter, A., & Schweinfort, W. (2011). Building scenarios with fuzzy cognitive maps: An exploratory study of solar energy. Futures, 43(1), 52–66.

    Article  Google Scholar 

  • Jones, B. (2002). Bounded rationality and public policyand the decisional foundation of collective choice. Policy Sciences, 35(3), 269–284.

    Article  Google Scholar 

  • Jose, A., & Contreras, J. (2010). The FCM designer tool. Fuzzy cognitive maps (pp. 71–87). Berlin: Springer.

    Chapter  Google Scholar 

  • Kaboli, S., & Tapio, P. (2018). How late-modern nomads imagine tomorrow? A causal layered analysis practice to explore the images of the future of young adults. Futures, 96, 32–43.

    Article  Google Scholar 

  • Kandasamy, W., & Indra, V. (2000). Applications of fuzzy cognitive maps to determine the maximum utility of a route. Journal of Fuzzy Mathematics, 8, 65–77.

    MATH  Google Scholar 

  • Kannappan, A., & Papageorgious, E. (2013). A new classification scheme using artificial immune systems learning for fuzzy cognitive mapping. In International Conference on Fuzzy Systems (FUZZ) (pp. 1–8). IEEE.

    Google Scholar 

  • Kant, I. (1871). Kritik der reinen Vernunft.

    Google Scholar 

  • Karlsen, J., & Karlsen, H. (2013). Classification of tools and approaches applicable in foresight studies. In Recent developments in foresight methodologies (pp. 27–52). Boston, MA: Springer.

    Google Scholar 

  • Karplus, W. (1958). Analog simulation: Solution of field problems. New York: McGraw-Hill.

    Google Scholar 

  • Karplus, W. (1964). Design and error analysis of high-accuracy dc voltage-measuring systems. IEEE Transactions on Instrumentation and Measurement, 13(2), 139–145.

    Article  Google Scholar 

  • Karplus, W. (1977). The spectrum of mathematical modeling and systems simulation. Mathematics and Computers in Simulation, 19(1), 3–10.

    Article  Google Scholar 

  • Khan, M., Chong, A., & Gedeon, T. (2000). A methodology for developing adaptive fuzzy cognitive maps for decision support. Jaciii, 4(6), 403–407.

    Article  Google Scholar 

  • Khan, M., & Quaddus, M. (2004). Group decision support using fuzzy cognitive maps for causal reasoning. Group Decision and Negotiation, 13(5), 463–480.

    Article  Google Scholar 

  • Kok, K. (2009). The potential of fuzzy cognitive maps for semi-quantitative scenario development, with an example from Brazil. Global Environmental Change, 19(1), 122–133.

    Article  Google Scholar 

  • Kosko, B. (1998). Global stability of generalized additive fuzzy systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 28(3), 441–452.

    Article  Google Scholar 

  • Kosko, B. (1999). The fuzzy future: From society and science to heaven in a chip. Harmony.

    Google Scholar 

  • Kosko, B., & Toms, M. (1993). Fuzzy thinking: The new science of fuzzy logic. New York: Hyperion.

    Google Scholar 

  • Kosow,, H., & Gaßner, R. (2008). Methods of future and scenario analysis: Overview, assessment, and selection criteria (Vol. 39). Deutschland.

    Google Scholar 

  • Kreibich, R. (2006). Zukunftsforschung. Arbeitsbericht Nr. 23/2006. Berlin: Institute for Future Studies and Technology Assessment (in German).

    Google Scholar 

  • Krohling, R., & de Souza, T. (2012). Combining prospect theory and fuzzy numbers to multi-criteria decision making. Expert Systems with Applications, 39(13), 11487–11493.

    Article  Google Scholar 

  • Kuosa, T. (2013). Forms of reasoning in Pattern management and in strategic intelligence. In Recent developments in foresight methodologies (pp. 93–107). Boston, MA: Springer.

    Google Scholar 

  • Lee, K., Kim, J., Chung, N., & Kwon, S. (2002). Fuzzy cognitive map approach to web-mining inference amplification. Expert Systems with Applications, 22(3), 197–211.

    Article  Google Scholar 

  • León, M., Rodriguez, C., García, M., Bello, R., & Vanhoof, K. (2010). Fuzzy cognitive maps for modeling complex systems. In Mexican International Conference on Artificial Intelligence (pp. 166–174).

    Google Scholar 

  • Lettner, M., Schöggl, J., & Stern, T. (2017). Factors influencing the market diffusion of bio-based plastics: Results of four comparative scenario analyses. Journal of Cleaner Production, 157, 289–298.

    Article  Google Scholar 

  • Levi, M., Boudon, R., & Olson, M. (1978). Logique de l’action collective. Presses universitaires de France.

    Google Scholar 

  • Lissack, M. (1999). Complexity: The science, its vocabulary, and its relation to organizations. Emergence, 1(1), 110–126.

    Article  Google Scholar 

  • Liu, Z., & Satur, R. (1999). Contextual fuzzy cognitive map for decision support in geographic information systems. IEEE Transactions on Fuzzy Systems, 7(5), 495–507.

    Article  Google Scholar 

  • Mago, V. K., Bakker, L., Papageorgious, E. I., Alimadad, A., & Borwein, P. (2012). Fuzzy cognitive maps and cellular automata: An evolutionary approach for social systems modelling. Applied Soft Computing, 12(12), 3771–3784.

    Article  Google Scholar 

  • Mahdavi, I., Mahdavi-Amiri, N., Heidarzade, A., & Nourifar, R. (2008). Designing a model of fuzzy TOPSIS in multiple criteria decision making. Applied Mathematics and Computation, 206(2), 607–617.

    Article  MathSciNet  MATH  Google Scholar 

  • Mandelbrot, B. (1967). How long is the coast of Britain. Science, 636–638.

    Article  Google Scholar 

  • Mandelbrot, B. (1974). Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. Journal of Fluid Mechanics, 331–358.

    Article  MATH  Google Scholar 

  • Mandelbrot, B. (1977). Fractals. John Wiley and Sons, Inc.

    Google Scholar 

  • Mandelbrot, B. (1996). Del azar benigno al azar salvaje. Investigación y ciencia, 243, 14–20.

    Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature (Vol. 173, p. 51). New York: WH freeman.

    Google Scholar 

  • Marien, M. (2002). Futures studies in the 21st century: A reality-based view. Futures, 34(3–4), 261–281.

    Article  Google Scholar 

  • Massé, P. (1964). Les principes de la planification française. Weltwirtschaftliches Archiv

    Google Scholar 

  • Maturana, H., Varela, F., & Behncke, R. (1984). El árbol del conocimiento: las bases biológicas del entendimiento humano (Vol. 1). Organización de Estados Americanos, OEA.

    Google Scholar 

  • Mendonça, S., Cunha, M., Kaivo-Oja, J., & Ruff, F. (2004). Wild cards, weak signals and organisational improvisation. Futures, 36(2), 201–2018.

    Article  Google Scholar 

  • Miao, Y., Liu, Z., Siew, C., & Miao, C. (2001). Dynamical cognitive network—An extension of fuzzy cognitive map. IEEE Transactions on Fuzzy Systems, 9(5), 760–770.

    Article  Google Scholar 

  • Minati, G., Abram, M., & Pessa, E. (2016). Towards a post-Bertalanffy systemics. Berlin: Springer.

    Google Scholar 

  • Minati, G., & Pessa, E. (2006). Collective beings. Berlin: Springer Science and Business Media.

    Google Scholar 

  • Morin, E. (2008). Autobiografía de Edgar Morin. Retrieved octubre 2, 2017, from Comunidad de Pensamiento Complejo: www.pensamientocomplejo.com.ar.

  • Neisser, U. (1967). Cognitive psychology. Appleton-Century-Crofts.

    Google Scholar 

  • Novák, V., Perfilieva, I., & Mockor, J. (2012). Mathematical principles of fuzzy logic (Vol. 517). Berlin: Springer Science and Business Media.

    Google Scholar 

  • Obiedat, M., & Samarasinghe, S. (2011). A new method for identifying the central nodes in fuzzy cognitive maps using consensus centrality measure.

    Google Scholar 

  • Olson, M. (1965). The logic of collective action: Public goods and the theory of group.

    Google Scholar 

  • Papageorgious, I. (2012). Learning algorithms for fuzzy cognitive maps—a review study. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(2), 150–163.

    Article  Google Scholar 

  • Papageorgious, E., Hatwágner, M., Buruzs, A., & Kóczy, L. (2017). A concept reduction approach for fuzzy cognitive map models in decision making and management. Neurocomputing, 232, 16–33.

    Article  Google Scholar 

  • Papageorgious, E., Spyridonos, P., Glotsos, D., Stylios, C., Ravazoula, P., Nikiforidis, G., et al. (2008). Brain tumor characterization using the soft computing technique of fuzzy cognitive maps. Applied Soft Computing, 8(1), 820–828.

    Article  Google Scholar 

  • Papageorgious, E., & Stylios, C. (2008). Fuzzy cognitive maps. In Handbook of granular computing (pp. 755–774).

    Google Scholar 

  • Papageourgious, E. (2011). A new methodology for decisions in medical informatics using fuzzy cognitive maps based on fuzzy rule-extraction techniques. Applied Soft Computing, 11(1), 500–513.

    Article  Google Scholar 

  • Papakosta, G., Koulouriotis, D., Polydoros, A., & Tourassis, V. (2012). Towards Hebbian learning of fuzzy cognitive maps in pattern classification problems. Expert Systems with Applications, 39(12), 10620–10629.

    Article  Google Scholar 

  • Park, K., & Kim, S. (1995). Fuzzy cognitive maps considering time relationships. International Journal of Human-Computer Studies, 42(2), 157–168.

    Article  Google Scholar 

  • Parsons, T., & Shils, E. (1951). Toward a general theory of action. Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

  • Pessa, E. (2000). Cognitive modelling and dynamical systems theory. La Nuova Critica, 1(35), 53–94.

    Google Scholar 

  • Popper, R. (2011). 21st century foresight (Doctoral dissertation). University of Manchester.

    Google Scholar 

  • Prigogine, I., & Stengers, I. (1997). The end of certainty. Simon and Schuster.

    Google Scholar 

  • Ragin, C. (2009). Qualitative comparative analysis using fuzzy sets (fsQCA). In Configurational comparative methods (Vol. 51).

    Google Scholar 

  • Régnier, F. (1989). Annoncer la couleur.

    Google Scholar 

  • Rezaee, M., Yousefi, S., & Hayati, J. (2018). A decision system using fuzzy cognitive map and multi-group data envelopment analysis to estimate hospitals’ outputs level. Neural Computing and Applications, 29(3), 761–777.

    Article  Google Scholar 

  • Rohrbeck, R., & Gemünden, H. (2011). Corporate foresight: Its three roles in enhancing the innovation capacity of a firm. Technological Forecasting and Social Change, 78(2), 231–243.

    Article  Google Scholar 

  • Roubelat, F. (1996). La prospective stratégique en perspective: genèse, études de cas, prospective (Doctoral dissertation).

    Google Scholar 

  • Roubelat, F. (2000). Scenario planning as a networking process. Technological Forecasting and Social Change, 65(1), 99–112.

    Article  Google Scholar 

  • Salmeron, J. (2009). Augmented fuzzy cognitive maps for modelling LMS critical success factors. Knowledge-Based Systems, 22(4), 275–278.

    Article  Google Scholar 

  • Salmeron, J., & Papageorgious, E. (2012). A fuzzy grey cognitive maps-based decision support system for radiotherapy treatment planning. Knowledge-Based Systems, 30, 151–160.

    Article  Google Scholar 

  • Shannon, C. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.

    Article  MathSciNet  MATH  Google Scholar 

  • Shannon, C., & Weaver, W. (1949). The mathematical theory of communication. Illinois, EEUU: Urbana.

    MATH  Google Scholar 

  • Simon, H. (1996). The sciences of the artificial. Cambridge: MIT Press.

    Google Scholar 

  • Simon, H. (1997). Models of bounded rationality: Empirically grounded economic reason (Vol. 3). Cambridge: MIT Press.

    Google Scholar 

  • Slaughter, R. (1991). Changing images of futures in the 20th century. Futures, 23(5), 499–515.

    Article  Google Scholar 

  • Son, H. (2015). The history of Western futures studies: An exploration of the intellectual traditions and three-phase periodization. Futures, 66, 120–137.

    Article  Google Scholar 

  • Štula, M., Maras, J., & Mladenović, S. (2017). Continuously self-adjusting fuzzy cognitive map with semi-autonomous concepts. Neurocomputing, 232, 34–51.

    Article  Google Scholar 

  • Stylios, C., Georgopoulos, V., & Groumpos, P. (1997). Introducing the theory of fuzzy cognitive maps in distributed systems. In Proceedings of the 1997 IEEE International Symposium on Intelligent Control (pp. 55–60).

    Google Scholar 

  • Stylios, C., and Groumpos, P. (2000). Fuzzy cognitive maps: A soft computing technique for intelligent control. In Proceedings of the 2000 IEEE International Symposium on Intelligent Control.

    Google Scholar 

  • Stylos, C., & Groumpos, P. (2004). Modeling complex systems using fuzzy cognitive maps. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 34(1), 155–162.

    Article  Google Scholar 

  • Sun, B., & Ma, W. (2011). Fuzzy rough set model on two different universes and its application. Applied Mathematical Modelling, 35(4), 1798–1809.

    Article  MathSciNet  MATH  Google Scholar 

  • Syau, Y. (1999a). On convex and concave fuzzy mappings. Fuzzy Sets and Systems, 103(1), 163–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Syau, Y. (1999b). Preinvex fuzzy mappings. Computers and Mathematics with Applications, 37(3), 31–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Taber, R. (1991). Knowledge processing with fuzzy cognitive maps. Expert Systems with Applications, 2(1), 83–87.

    Article  Google Scholar 

  • Touraine, A. (1984). Le retour de l’acteur: essai de sociologie.

    Google Scholar 

  • Touraine, A. (1998). Sociology: from systems to actors. In Lecture was presented at Session 2 of Symposium YI. ISA Congress in Montreal.

    Google Scholar 

  • Tsadiras, A., & Bassiliades, N. (2013). RuleML representation and simulation of fuzzy cognitive maps. Expert Systems with Applications, 40(5), 1413–1426.

    Article  Google Scholar 

  • Tsadiras, A., & Margaritis, K. (2007). A new balance degree for fuzzy cognitive maps. In E. s. techniques.

    Google Scholar 

  • Tzeng, G., & Huang, J. (2011). Multiple attribute decision making: methods and applications. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • Vacum, C. A., & Melo, C. (2010). Directions in scenario planning literature—A review of the past decades. Futures, 42(4), 355–369.

    Google Scholar 

  • Van der Laan, L., & Yap, J. (2016). Foresight and Strategy in the Asia Pacific Region. Singapore: Springer.

    Book  Google Scholar 

  • Van Notten, P. W., Rotmans, J., Van Asselt, M. B., & Rothman, D. S. (2003). An updated scenario typology., 35(5), 423–443.

    Google Scholar 

  • Varela, F., & Maturana, H. (1972). Mechanism and biological explanation. Philosophy of Science, 39(3), 378–382.

    Article  Google Scholar 

  • Vasslides, J., & Jensen, O. (2016). Fuzzy cognitive mapping in support of integrated ecosystem assessments: Developing a shared conceptual model among stakeholders. Journal of Environmental Management, 166, 348–356.

    Article  Google Scholar 

  • Vecchiato, R. (2015). Creating value through foresight: First mover advantages and strategic agility. Technological Forecasting and Social Change, 101, 25–36.

    Article  Google Scholar 

  • Vidal, R. (2011). El giro epistemológico hermenéutico en la última tradición científica moderna. Cinta de moebio, 40, 22–46.

    Article  Google Scholar 

  • Von Foerster, H. (1949). Quantum mechanical theory of memory. Cybernetics: Circular Causal, and Feedback Mechanisms in Biological and Social Systems. Josiah Macy Jr. Foundation, 112–145.

    Google Scholar 

  • Von Foerster, H. (1995). Ethics and second-order cybernetics. Stanford Humanities Review, 4(2), 308–319.

    Google Scholar 

  • Von Foerster, H. (2003). Cybernetics of cybernetics. In Understanding understanding: Essays on cybernetics and cognition (pp. 283–286).

    Google Scholar 

  • Von Neumann, J. (1951). The general and logical theory of automata. Cerebral mechanisms in behavior, 1(41), 1–2.

    MathSciNet  Google Scholar 

  • Von Neumann, J. (1955). Mathematical foundations of quantum mechanics (No. 2) (Vol. 2). Princeton: Princeton University Press.

    Google Scholar 

  • Von Neumann, J., & Burks, A. (1966). Theory of self-reproducing automata. IEEE Transactions on Neural Networks, 5(1), 3–14.

    Google Scholar 

  • Von Neumann, J., & Morgenstern, O. (1945). Theory of games and economic behavior. Bulletin of the American Mathematical Society, 51(7), 498–504.

    Google Scholar 

  • Wright, G., & Goodwin, P. (2009). Decision making and planning under low levels of predictability: Enhancing the scenario method. International Journal of Forecasting, 25(4), 813–825.

    Article  Google Scholar 

  • Xirogiannis, G., Glykas, M., & Staikouras, C. (2010). Fuzzy cognitive maps in banking business process performance measurement. Fuzzy cognitive maps (pp. 161–200). Berlin: Springer.

    Chapter  Google Scholar 

  • Yang, W., Wang, J., & Wang, X. (2012). An outranking method for multi-criteria decision making with duplex linguistic information. Fuzzy Sets and Systems, 198, 20–33.

    Article  MathSciNet  MATH  Google Scholar 

  • Yin, R. (1989). Case study research: Design and methods, revised edition. Applied Social Research Methods Series, 5.

    Google Scholar 

  • Zimmermann, H. (2012). Fuzzy sets, decision making, and expert systems (Vol. 10). Berlin: Springer Science and Business Media.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Trujillo-Cabezas .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trujillo-Cabezas, R., Verdegay, J.L. (2020). Constructing Models. In: Integrating Soft Computing into Strategic Prospective Methods. Studies in Fuzziness and Soft Computing, vol 387. Springer, Cham. https://doi.org/10.1007/978-3-030-25432-2_4

Download citation

Publish with us

Policies and ethics