Advertisement

Modeling and Simulation of the Future

  • Raúl Trujillo-CabezasEmail author
  • José Luis Verdegay
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 387)

Abstract

The process of long-term reflection involves a wide and deep inference activity aimed at recognizing the most convenient future for the studied system, in contrast to what deterministic models based on trends and the intensive processing of historical information offer, which focus on the identification of certainties. To reduce the uncertainty that occurs it is necessary to find safety points to reach the future that was chosen as the most convenient, within a time horizon and implement its strategies. This chapter discusses the fundamental elements to develop a proposal to model and simulate the future, which respond to the ideas that the prospective defines about the future, combining Soft Computing and Prospective methods.

References

  1. Aaltonen, M., & Holmström, J. (2010). Multi-ontology topology of the strategic landscape in three practical cases. Technological Forecasting and Social Change, 77(9), 1519–1526.CrossRefGoogle Scholar
  2. Adegoke, A., & Traoré, M. (2014). System of systems based approaches to global simulation in Africa. In Proceedings of the 2014 Annual Simulation Symposium.Google Scholar
  3. Agami, N., Atiya, A., Saleh, M., & El-Shishiny, H. (2009). A neural network based dynamic forecasting model for trend impact analysis. Technological Forecasting and Social Change, 76(7), 952–962.CrossRefGoogle Scholar
  4. Agami, N., Omran, A., Saleh, M., & El-Shishiny, H. (2008). An enhanced approach for trend impact analysis. Technological Forecasting and Social Change, 75(9), 1439–1450.CrossRefGoogle Scholar
  5. Agami, N., Saleh, M., & El-Shishiny, H. (2010). A fuzzy logic based trend impact analysis method. Technological Forecasting and Social Change, 77(7), 1051–1060.CrossRefGoogle Scholar
  6. Amanatidou, E. (2012). Assessing the contribution of Foresight to a more participatory? Knowledge society? (Doctoral thesis).Google Scholar
  7. Amer, M., Daim, T., & Jetter, A. (2013). A review of scenario planning. Futures, 26, 23–40.CrossRefGoogle Scholar
  8. Bachelard, G. (1936). Dans Inquisitions, du surralisme au Front populaire. Facsimil la revue (1936) augm. (s. l. documents indits, Ed.) Paris.Google Scholar
  9. Bachelard, G. (1949). Le Rationalisme appliqu. Paris 3. Presses Universitaires, France.Google Scholar
  10. Basco-Carrera, L., Warren, A., van Beek, E., Jonoski, A., & Giardino, A. (2017). Collaborative modelling or participatory modelling? A framework for water resources management. Environmental Modelling and Software, 91, 95–110.CrossRefGoogle Scholar
  11. Berger, G. (1957). Sciences humaines et prévision. Revue des Deux Mondes, 1829–1971, 417–426.Google Scholar
  12. Borkowski, J. (1996). Metacognition: Theory or chapter heading? Learning and Individual Differences, 8(4), 391–402.CrossRefGoogle Scholar
  13. Bouyssou, D. (1986). Some remarks on the notion of compensation in MCDM. European Journal of Operational Research, 26(1), 150–160.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Brans, J., & Vincke, P. (1985). Note—A preference ranking organisation method: (The PROMETHEE method for multiple criteria decision-making). Management Science, 31(6), 647–656.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Cabezas, R. T., & Verdegay, J. L. (2019, June). Intelligent System of Strategic Monitoring. In 2019 14th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1–6). IEEE.Google Scholar
  16. Cao, G., Clarke, S., & Lehaney, B. (2000). A systemic view of organisational change and TQM. The TQM Magazine, 12(3), 186–193.CrossRefGoogle Scholar
  17. Cao, G., Clarke, S., & Lehaney, B. (2004). The need for a systemic approach to change management—A case study. Systemic Practice and Action Research, 17(2), 103–126.CrossRefGoogle Scholar
  18. Ceballos, B., Jimenez, M., Mochcovsky, D., & Sanchez, J. (2013). El método TOPSIS relativo vs. absoluto. Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA (14), 181–192.Google Scholar
  19. Ceballos, B., Lamata, M., & Pelta, D. (2017). Fuzzy multicriteria decision-making methods: A comparative analysis. International Journal of Intelligent Systems, 32(7), 722–738.CrossRefGoogle Scholar
  20. Chen, C. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment (Vol. 114). Fuzzy sets and systems.Google Scholar
  21. Cioffi-Revilla, C. (2017). Introduction to computational social science. London: Springer.zbMATHCrossRefGoogle Scholar
  22. Cioffi-Rivilla, C. (2014). Introduction to computational social science. London: Springer.CrossRefGoogle Scholar
  23. Cohen, W., & Levinthal, D. (2000). Absorptive capacity: A new perspective on learning and innovation. In Strategic learning in a knowledge economy (pp. 39–67).Google Scholar
  24. De Jouvenel, B. (1967). arte della congettura. Florencia: Vallecchi Editore.Google Scholar
  25. Dufva, M., & Ahlqvist, T. (2015). Knowledge creation dynamics in foresight: A knowledge typology and exploratory method to analyse foresight workshops. Technological Forecasting and Social Change, Technological Forecasting and Social Change, 94, 251–268.CrossRefGoogle Scholar
  26. Durance, P. (2010). Reciprocal influences in future thinking between Europe and the USA. Technological Forecasting and Social Change, 77(9), 1469–1475.CrossRefGoogle Scholar
  27. Floyd, J. (2007). Thermodynamics, entropy and disorder in futures studies. Futures, 39(9), 1029–1044.CrossRefGoogle Scholar
  28. Freundschuh, S., & Egenhofer, M. (1997). Human conceptions of spaces: implications for GIS. Transactions in GIS, 2(4), 361–375.CrossRefGoogle Scholar
  29. Godet, M. (1990a). From anticipation to action–A handbook of strategic prospective. UNESCO.Google Scholar
  30. Godet, M. (1990b). Integration of scenarios and strategic management: using relevant, consistent and likely scenarios. Futures, 22(7), 730–739.CrossRefGoogle Scholar
  31. Godet, M. (1995a). Estrategia y Gestión Competitiva, De la anticipación de la acción: Manual de Prospectiva y Estrategia. (Alfaomega, Ed.).Google Scholar
  32. Godet, M. (1995b). How to be rigorous with scenario planning. foresight. Foresight, 2(1), 5–9.CrossRefGoogle Scholar
  33. Godet, M. (2000). The art of scenarios and strategic planning: tools and pitfalls. Technological Forecasting and Social Change, 65(1), 3–22.CrossRefGoogle Scholar
  34. Godet, M., & Roubelat, F. (1996). Creating the future: the use and misuse of scenarios. Long Range Planning, 29(2), 164–171.CrossRefGoogle Scholar
  35. Gordon, T. (1969). Cross-impact matrices: An illustration of their use for policy analysis. Futures, 1(6), 527–531.CrossRefGoogle Scholar
  36. Gordon, T., Becker, H., & Gerjuoy, H. (1974). Trend impact analysis: A new forecasting tool. Futures Group.Google Scholar
  37. Gordon, T., & Greenspan, D. (1994). The management of chaotic systems. Technological Forecasting and Social Change, 47(1), 49–62.CrossRefGoogle Scholar
  38. Gordon, T., & Stover, J. (1976). Using perceptions and data about the future to improve the simulation of complex systems. Technological Forecasting and Social Change, 9(1–2), 191–211.CrossRefGoogle Scholar
  39. Gosavi, A. (2003). Simulation-based optimization. In Parametric optimization techniques and reinforcement learning. Berlin: Springer.Google Scholar
  40. Gray, S., Gray, S., De Kok, J., Helfgott, A., O’Dwyer, B., Jordan, R., et al. (2015). Using fuzzy cognitive mapping as a participatory approach to analyze change, preferred states, and perceived resilience of social-ecological systems. Ecology and Society, 20.Google Scholar
  41. Houet, T., Marchadier, C., Bretagne, G., Moine, M., Aguejdad, R., Viguié, V., et al. (2016). Combining narratives and modelling approaches to simulate fine scale and long-term urban growth scenarios for climate adaptation. Environmental Modelling and Software, 86, 1–13.CrossRefGoogle Scholar
  42. Hwang, C., Paidy, S., Yoon, H., & Masud, A. (1980). Mathematical programming with multiple objectives: A tutorial. Computers & Operations Research, 7(1–2), 5–31.CrossRefGoogle Scholar
  43. Inayatullah, S. (1998a). Causal layered analysis: Poststructuralism as method. Futures, 30(8), 815–829.CrossRefGoogle Scholar
  44. Inayatullah, S. (1998b). Sarkar’s spiritual dialectics: an unconventional view of the future. Futures, 20(1), 54–65.CrossRefGoogle Scholar
  45. Inayatullah, S. (2006). Anticipatory action learning: Theory and practice. Futures, 38(6), 656–666.CrossRefGoogle Scholar
  46. Jetter, A., & Kok, K. (2014). Fuzzy cognitive maps for futures studies—A methodological assessment of concepts and methods. Futures, 61, 45–57.CrossRefGoogle Scholar
  47. Jetter, A., & Schweinfort, W. (2011). Building scenarios with fuzzy cognitive maps: An exploratory study of solar energy. Futures, 43(1), 52–66.CrossRefGoogle Scholar
  48. Jones, B. (2002). Bounded rationality and public policy: Herbert A. Simon and the decisional foundation of collective choice. Policy Sciences, 35(3), 269–284.Google Scholar
  49. Jordan, R., Gray, S., Sorense, A., Newman, G., Mellor, D., & Crall, A. (2016). Studying citizen science through adaptive management and learning feedbacks as mechanisms for improving conservation. Conservation Biology, 30(3), 487–495.CrossRefGoogle Scholar
  50. Kitzler, A. (2014). Wie lebe ich ein gutes Leben?: Philosophie für Praktiker. Pattloch eBook.Google Scholar
  51. Kosow,, H., & Gaßner, R. (2008). Methods of future and scenario analysis: Overview, assessment, and selection criteria (Vol. 39). Deutschland.Google Scholar
  52. Laes, E., Ruan, D., Maes, F., & Verbruggen, A. (2013). Methodological challenges in combining quantitative and qualitative foresight methods for sustainable energy futures: The SEPIA project. Recent Developments in Foresight Methodologies, 253–274.Google Scholar
  53. Lamata, M., Pelta, D., & Verdegay, J. (2018). Optimisation problems as decision problems: The case of fuzzy optimisation problems. Information Sciences, 460, 377–388.MathSciNetCrossRefGoogle Scholar
  54. Lamata, M., & Verdegay, J. (2018). On new frameworks for decision making and optimization. In The mathematics of the uncertain (pp. 629–641). Berlin: Springer.Google Scholar
  55. MacCrimmon, K. (1968). Decisionmaking among multiple-attribute alternatives: A survey and consolidated approach (No. RM-4823-ARPA). Santa Monica, CA: RAND CORPORATION.Google Scholar
  56. Makridakis, S., & Taleb, N. (2009). Decision making and planning under low levels of predictability.Google Scholar
  57. Mallampalli, V., Mavrommati, G., Thompson, J., Duveneck, M., Meyer, S., Ligmann-Zielinska, A., et al. (2016). Methods for translating narrative scenarios into quantitative assessments of land use change. Environmental Modelling and Software, 82, 7–20.CrossRefGoogle Scholar
  58. Mandelbrot, B. (1996). Del azar benigno al azar salvaje. Investigación y ciencia, 243, 14–20.Google Scholar
  59. Marien, M. (2002). Futures studies in the 21st century: a reality-based view. Futures, 34(3–4), 261–281.CrossRefGoogle Scholar
  60. Massam, B. (1988). Multi-criteria decision making (MCDM) techniques in planning. Progress in planning, 30, 1–84.CrossRefGoogle Scholar
  61. Minati, G., Abram, M., & Pessa, E. (2016). Towards a post-Bertalanffy systemics. Berlin: Springer.Google Scholar
  62. Minati, G., & Pessa, E. (2006). Collective beings. Berlin: Springer Science and Business Media.Google Scholar
  63. Mojica, F. (2005). La construcción del futuro. (E. U. Bello, Ed.) Bogotá.Google Scholar
  64. Neisser, U. (1967). Cognitive psychology. Appleton-Century-Crofts.Google Scholar
  65. Olazabal, M., & Pascual, U. (2016). Use of fuzzy cognitive maps to study urban resilience and transformation. Environmental Innovation and Societal Transitions, 18, v.CrossRefGoogle Scholar
  66. Palermo, T., Power, M., & Ashby, S. (2017). Navigating institutional complexity: The production of risk culture in the financial sector. Journal of Management Studies, 54(2), 154–181.CrossRefGoogle Scholar
  67. Papageorgiou, E. (2013). Fuzzy cognitive maps for applied sciences and engineering: From fundamentals to extensions and learning algorithms (Vol. 54). Berlin: Springer Science and Business Media.Google Scholar
  68. Pessa, E. (2000). Cognitive modelling and dynamical systems theory. La Nuova Critica, 1(35), 53–94.Google Scholar
  69. Popper, R. (2011). 21st century foresight (Doctoral dissertation). University of Manchester.Google Scholar
  70. Prigogine, I., & Stengers, I. (1984). Order out of Chaos. London: Heinemann.Google Scholar
  71. Ray, M., Rai, A., Singh, K., Ramasubramanian, V., & Kumar, A. (2017). Technology forecasting using time series intervention based trend impact analysis for wheat yield scenario in India. Technological Forecasting and Social Change, 118, 128–133.CrossRefGoogle Scholar
  72. Rezaee, M., Yousefi, S., & Hayati, J. (2018). A decision system using fuzzy cognitive map and multi-group data envelopment analysis to estimate hospitals’ outputs level. Neural Computing and Applications, 29(3), 761–777.CrossRefGoogle Scholar
  73. Ringland, G. (2010). The role of scenarios in strategic foresight. Technological Forecasting and Social Change, 77(9), 1493–1498.CrossRefGoogle Scholar
  74. Roubelat, F. (2000). Scenario planning as a networking process. Technological Forecasting and Social Change, 65(1), 99–112.CrossRefGoogle Scholar
  75. Senge, P. (1990). The fifth discipline: The art and science of the learning organization. New York: Currency Doubleday.Google Scholar
  76. Simon, H. (1996). The sciences of the artificial. Cambridge: MIT Press.Google Scholar
  77. Simon, H. (1997). Models of bounded rationality: Empirically grounded economic reason (Vol. 3). Cambeidge: MIT Press.Google Scholar
  78. Slaughter, R., Inayatullah, S., & Ramos, J. (2005). The knowledge base of futures studies. Professional edition. Foresight International, Brisbane. www.foresightinternational.com.au.
  79. Suwignjo, P., Bititci, U., & Carrie, A. (2000). Quantitative models for performance measurement system. International Journal of Production Economics, 64(1–3), 231–241.CrossRefGoogle Scholar
  80. Takano, C., & Aida, M. (2018). Damped oscillation model with frequency-dependent decay rate in social networks. In 2018 International Symposium on Nonlinear Theory and Its Applications (NOLTA2018) (pp. 188–191).Google Scholar
  81. Tevis, R. (2010). Creating the future: goal-oriented scenario planning. Futures, 42(4), 337–344.CrossRefGoogle Scholar
  82. Touraine, A. (1984). Le retour de l’acteur: essai de sociologie.Google Scholar
  83. Touraine, A. (1998). Sociology: From systems to actors. In Lecture was presented at Session 2 of Symposium YI. ISA Congress in Montreal.Google Scholar
  84. Tsadiras, A. (2008). Comparing the inference capabilities of binary, trivalent and sigmoid fuzzy cognitive maps. Information Sciences, 178(20), 3880–3894.CrossRefGoogle Scholar
  85. Tsadiras, A., & Bassiliades, N. (2013). RuleML representation and simulation of fuzzy cognitive maps. Expert Systems with Applications, 40(5), 1413–1426.CrossRefGoogle Scholar
  86. Tsadiras, A., & Margaritis, K. (2007). A new balance degree for fuzzy cognitive maps. In E. s. techniques.Google Scholar
  87. Varum, C. A., & Melo, C. (2010). Directions in scenario planning literature—A review of the past decades. Futures, 42(4), 355–369.Google Scholar
  88. Van Notten, P. W., Rotmans, J., Van Asselt, M. B., & Rothman, D. S. (2003). An updated scenario typology., 35(5), 423–443.Google Scholar
  89. Vidal, R. (2011). El giro epistemológico hermenéutico en la última tradición científica moderna. Cinta de moebio, 40, 22–46.CrossRefGoogle Scholar
  90. Weimer-Jehle, W. (2006). Cross-impact balances: A system-theoretical approach to cross-impact analysis. Technological Forecasting and Social Change, 73(4), 334–361.CrossRefGoogle Scholar
  91. Wright, G., & Goodwin, P. (2009). Decision making and planning under low levels of predictability: Enhancing the scenario method. International Journal of Forecasting, 25(4), 813–825.CrossRefGoogle Scholar
  92. Yager, R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on systems, Man, and Cybernetics, 18(1), 183–190.MathSciNetzbMATHCrossRefGoogle Scholar
  93. Zadeh, L. A. (1965). Fuzzy set. Information and Control, 8, 338–353.MathSciNetzbMATHCrossRefGoogle Scholar
  94. Zhu, J., & Hipel, K. (2012). Multiple stages grey target decision making method with incomplete weight based on multi-granularity linguistic label. Information Sciences, 212, 15–32.CrossRefGoogle Scholar
  95. Ziv, G., Watson, E., Young, D., Howard, D., Larcom, S., & Tanentzap, A. (2018). The potential impact of Brexit on the energy, water and food nexus in the UK: A fuzzy cognitive mapping approach. Applied Energy, 2(10), 487–498.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of ManagementUniversidad Externado de ColombiaBogotáColombia
  2. 2.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations