Skip to main content

Modeling and Simulation of the Future

  • Chapter
  • First Online:
Integrating Soft Computing into Strategic Prospective Methods

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 387))

Abstract

The process of long-term reflection involves a wide and deep inference activity aimed at recognizing the most convenient future for the studied system, in contrast to what deterministic models based on trends and the intensive processing of historical information offer, which focus on the identification of certainties. To reduce the uncertainty that occurs it is necessary to find safety points to reach the future that was chosen as the most convenient, within a time horizon and implement its strategies. This chapter discusses the fundamental elements to develop a proposal to model and simulate the future, which respond to the ideas that the prospective defines about the future, combining Soft Computing and Prospective methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaltonen, M., & Holmström, J. (2010). Multi-ontology topology of the strategic landscape in three practical cases. Technological Forecasting and Social Change, 77(9), 1519–1526.

    Article  Google Scholar 

  • Adegoke, A., & Traoré, M. (2014). System of systems based approaches to global simulation in Africa. In Proceedings of the 2014 Annual Simulation Symposium.

    Google Scholar 

  • Agami, N., Atiya, A., Saleh, M., & El-Shishiny, H. (2009). A neural network based dynamic forecasting model for trend impact analysis. Technological Forecasting and Social Change, 76(7), 952–962.

    Article  Google Scholar 

  • Agami, N., Omran, A., Saleh, M., & El-Shishiny, H. (2008). An enhanced approach for trend impact analysis. Technological Forecasting and Social Change, 75(9), 1439–1450.

    Article  Google Scholar 

  • Agami, N., Saleh, M., & El-Shishiny, H. (2010). A fuzzy logic based trend impact analysis method. Technological Forecasting and Social Change, 77(7), 1051–1060.

    Article  Google Scholar 

  • Amanatidou, E. (2012). Assessing the contribution of Foresight to a more participatory? Knowledge society? (Doctoral thesis).

    Google Scholar 

  • Amer, M., Daim, T., & Jetter, A. (2013). A review of scenario planning. Futures, 26, 23–40.

    Article  Google Scholar 

  • Bachelard, G. (1936). Dans Inquisitions, du surralisme au Front populaire. Facsimil la revue (1936) augm. (s. l. documents indits, Ed.) Paris.

    Google Scholar 

  • Bachelard, G. (1949). Le Rationalisme appliqu. Paris 3. Presses Universitaires, France.

    Google Scholar 

  • Basco-Carrera, L., Warren, A., van Beek, E., Jonoski, A., & Giardino, A. (2017). Collaborative modelling or participatory modelling? A framework for water resources management. Environmental Modelling and Software, 91, 95–110.

    Article  Google Scholar 

  • Berger, G. (1957). Sciences humaines et prévision. Revue des Deux Mondes, 1829–1971, 417–426.

    Google Scholar 

  • Borkowski, J. (1996). Metacognition: Theory or chapter heading? Learning and Individual Differences, 8(4), 391–402.

    Article  Google Scholar 

  • Bouyssou, D. (1986). Some remarks on the notion of compensation in MCDM. European Journal of Operational Research, 26(1), 150–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Brans, J., & Vincke, P. (1985). Note—A preference ranking organisation method: (The PROMETHEE method for multiple criteria decision-making). Management Science, 31(6), 647–656.

    Article  MathSciNet  MATH  Google Scholar 

  • Cabezas, R. T., & Verdegay, J. L. (2019, June). Intelligent System of Strategic Monitoring. In 2019 14th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1–6). IEEE.

    Google Scholar 

  • Cao, G., Clarke, S., & Lehaney, B. (2000). A systemic view of organisational change and TQM. The TQM Magazine, 12(3), 186–193.

    Article  Google Scholar 

  • Cao, G., Clarke, S., & Lehaney, B. (2004). The need for a systemic approach to change management—A case study. Systemic Practice and Action Research, 17(2), 103–126.

    Article  Google Scholar 

  • Ceballos, B., Jimenez, M., Mochcovsky, D., & Sanchez, J. (2013). El método TOPSIS relativo vs. absoluto. Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA (14), 181–192.

    Google Scholar 

  • Ceballos, B., Lamata, M., & Pelta, D. (2017). Fuzzy multicriteria decision-making methods: A comparative analysis. International Journal of Intelligent Systems, 32(7), 722–738.

    Article  Google Scholar 

  • Chen, C. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment (Vol. 114). Fuzzy sets and systems.

    Google Scholar 

  • Cioffi-Revilla, C. (2017). Introduction to computational social science. London: Springer.

    Book  MATH  Google Scholar 

  • Cioffi-Rivilla, C. (2014). Introduction to computational social science. London: Springer.

    Book  Google Scholar 

  • Cohen, W., & Levinthal, D. (2000). Absorptive capacity: A new perspective on learning and innovation. In Strategic learning in a knowledge economy (pp. 39–67).

    Google Scholar 

  • De Jouvenel, B. (1967). arte della congettura. Florencia: Vallecchi Editore.

    Google Scholar 

  • Dufva, M., & Ahlqvist, T. (2015). Knowledge creation dynamics in foresight: A knowledge typology and exploratory method to analyse foresight workshops. Technological Forecasting and Social Change, Technological Forecasting and Social Change, 94, 251–268.

    Article  Google Scholar 

  • Durance, P. (2010). Reciprocal influences in future thinking between Europe and the USA. Technological Forecasting and Social Change, 77(9), 1469–1475.

    Article  Google Scholar 

  • Floyd, J. (2007). Thermodynamics, entropy and disorder in futures studies. Futures, 39(9), 1029–1044.

    Article  Google Scholar 

  • Freundschuh, S., & Egenhofer, M. (1997). Human conceptions of spaces: implications for GIS. Transactions in GIS, 2(4), 361–375.

    Article  Google Scholar 

  • Godet, M. (1990a). From anticipation to action–A handbook of strategic prospective. UNESCO.

    Google Scholar 

  • Godet, M. (1990b). Integration of scenarios and strategic management: using relevant, consistent and likely scenarios. Futures, 22(7), 730–739.

    Article  Google Scholar 

  • Godet, M. (1995a). Estrategia y Gestión Competitiva, De la anticipación de la acción: Manual de Prospectiva y Estrategia. (Alfaomega, Ed.).

    Google Scholar 

  • Godet, M. (1995b). How to be rigorous with scenario planning. foresight. Foresight, 2(1), 5–9.

    Article  Google Scholar 

  • Godet, M. (2000). The art of scenarios and strategic planning: tools and pitfalls. Technological Forecasting and Social Change, 65(1), 3–22.

    Article  Google Scholar 

  • Godet, M., & Roubelat, F. (1996). Creating the future: the use and misuse of scenarios. Long Range Planning, 29(2), 164–171.

    Article  Google Scholar 

  • Gordon, T. (1969). Cross-impact matrices: An illustration of their use for policy analysis. Futures, 1(6), 527–531.

    Article  Google Scholar 

  • Gordon, T., Becker, H., & Gerjuoy, H. (1974). Trend impact analysis: A new forecasting tool. Futures Group.

    Google Scholar 

  • Gordon, T., & Greenspan, D. (1994). The management of chaotic systems. Technological Forecasting and Social Change, 47(1), 49–62.

    Article  Google Scholar 

  • Gordon, T., & Stover, J. (1976). Using perceptions and data about the future to improve the simulation of complex systems. Technological Forecasting and Social Change, 9(1–2), 191–211.

    Article  Google Scholar 

  • Gosavi, A. (2003). Simulation-based optimization. In Parametric optimization techniques and reinforcement learning. Berlin: Springer.

    Google Scholar 

  • Gray, S., Gray, S., De Kok, J., Helfgott, A., O’Dwyer, B., Jordan, R., et al. (2015). Using fuzzy cognitive mapping as a participatory approach to analyze change, preferred states, and perceived resilience of social-ecological systems. Ecology and Society, 20.

    Google Scholar 

  • Houet, T., Marchadier, C., Bretagne, G., Moine, M., Aguejdad, R., Viguié, V., et al. (2016). Combining narratives and modelling approaches to simulate fine scale and long-term urban growth scenarios for climate adaptation. Environmental Modelling and Software, 86, 1–13.

    Article  Google Scholar 

  • Hwang, C., Paidy, S., Yoon, H., & Masud, A. (1980). Mathematical programming with multiple objectives: A tutorial. Computers & Operations Research, 7(1–2), 5–31.

    Article  Google Scholar 

  • Inayatullah, S. (1998a). Causal layered analysis: Poststructuralism as method. Futures, 30(8), 815–829.

    Article  Google Scholar 

  • Inayatullah, S. (1998b). Sarkar’s spiritual dialectics: an unconventional view of the future. Futures, 20(1), 54–65.

    Article  Google Scholar 

  • Inayatullah, S. (2006). Anticipatory action learning: Theory and practice. Futures, 38(6), 656–666.

    Article  Google Scholar 

  • Jetter, A., & Kok, K. (2014). Fuzzy cognitive maps for futures studies—A methodological assessment of concepts and methods. Futures, 61, 45–57.

    Article  Google Scholar 

  • Jetter, A., & Schweinfort, W. (2011). Building scenarios with fuzzy cognitive maps: An exploratory study of solar energy. Futures, 43(1), 52–66.

    Article  Google Scholar 

  • Jones, B. (2002). Bounded rationality and public policy: Herbert A. Simon and the decisional foundation of collective choice. Policy Sciences, 35(3), 269–284.

    Google Scholar 

  • Jordan, R., Gray, S., Sorense, A., Newman, G., Mellor, D., & Crall, A. (2016). Studying citizen science through adaptive management and learning feedbacks as mechanisms for improving conservation. Conservation Biology, 30(3), 487–495.

    Article  Google Scholar 

  • Kitzler, A. (2014). Wie lebe ich ein gutes Leben?: Philosophie für Praktiker. Pattloch eBook.

    Google Scholar 

  • Kosow,, H., & Gaßner, R. (2008). Methods of future and scenario analysis: Overview, assessment, and selection criteria (Vol. 39). Deutschland.

    Google Scholar 

  • Laes, E., Ruan, D., Maes, F., & Verbruggen, A. (2013). Methodological challenges in combining quantitative and qualitative foresight methods for sustainable energy futures: The SEPIA project. Recent Developments in Foresight Methodologies, 253–274.

    Google Scholar 

  • Lamata, M., Pelta, D., & Verdegay, J. (2018). Optimisation problems as decision problems: The case of fuzzy optimisation problems. Information Sciences, 460, 377–388.

    Article  MathSciNet  Google Scholar 

  • Lamata, M., & Verdegay, J. (2018). On new frameworks for decision making and optimization. In The mathematics of the uncertain (pp. 629–641). Berlin: Springer.

    Google Scholar 

  • MacCrimmon, K. (1968). Decisionmaking among multiple-attribute alternatives: A survey and consolidated approach (No. RM-4823-ARPA). Santa Monica, CA: RAND CORPORATION.

    Google Scholar 

  • Makridakis, S., & Taleb, N. (2009). Decision making and planning under low levels of predictability.

    Google Scholar 

  • Mallampalli, V., Mavrommati, G., Thompson, J., Duveneck, M., Meyer, S., Ligmann-Zielinska, A., et al. (2016). Methods for translating narrative scenarios into quantitative assessments of land use change. Environmental Modelling and Software, 82, 7–20.

    Article  Google Scholar 

  • Mandelbrot, B. (1996). Del azar benigno al azar salvaje. Investigación y ciencia, 243, 14–20.

    Google Scholar 

  • Marien, M. (2002). Futures studies in the 21st century: a reality-based view. Futures, 34(3–4), 261–281.

    Article  Google Scholar 

  • Massam, B. (1988). Multi-criteria decision making (MCDM) techniques in planning. Progress in planning, 30, 1–84.

    Article  Google Scholar 

  • Minati, G., Abram, M., & Pessa, E. (2016). Towards a post-Bertalanffy systemics. Berlin: Springer.

    Google Scholar 

  • Minati, G., & Pessa, E. (2006). Collective beings. Berlin: Springer Science and Business Media.

    Google Scholar 

  • Mojica, F. (2005). La construcción del futuro. (E. U. Bello, Ed.) Bogotá.

    Google Scholar 

  • Neisser, U. (1967). Cognitive psychology. Appleton-Century-Crofts.

    Google Scholar 

  • Olazabal, M., & Pascual, U. (2016). Use of fuzzy cognitive maps to study urban resilience and transformation. Environmental Innovation and Societal Transitions, 18, v.

    Article  Google Scholar 

  • Palermo, T., Power, M., & Ashby, S. (2017). Navigating institutional complexity: The production of risk culture in the financial sector. Journal of Management Studies, 54(2), 154–181.

    Article  Google Scholar 

  • Papageorgiou, E. (2013). Fuzzy cognitive maps for applied sciences and engineering: From fundamentals to extensions and learning algorithms (Vol. 54). Berlin: Springer Science and Business Media.

    Google Scholar 

  • Pessa, E. (2000). Cognitive modelling and dynamical systems theory. La Nuova Critica, 1(35), 53–94.

    Google Scholar 

  • Popper, R. (2011). 21st century foresight (Doctoral dissertation). University of Manchester.

    Google Scholar 

  • Prigogine, I., & Stengers, I. (1984). Order out of Chaos. London: Heinemann.

    Google Scholar 

  • Ray, M., Rai, A., Singh, K., Ramasubramanian, V., & Kumar, A. (2017). Technology forecasting using time series intervention based trend impact analysis for wheat yield scenario in India. Technological Forecasting and Social Change, 118, 128–133.

    Article  Google Scholar 

  • Rezaee, M., Yousefi, S., & Hayati, J. (2018). A decision system using fuzzy cognitive map and multi-group data envelopment analysis to estimate hospitals’ outputs level. Neural Computing and Applications, 29(3), 761–777.

    Article  Google Scholar 

  • Ringland, G. (2010). The role of scenarios in strategic foresight. Technological Forecasting and Social Change, 77(9), 1493–1498.

    Article  Google Scholar 

  • Roubelat, F. (2000). Scenario planning as a networking process. Technological Forecasting and Social Change, 65(1), 99–112.

    Article  Google Scholar 

  • Senge, P. (1990). The fifth discipline: The art and science of the learning organization. New York: Currency Doubleday.

    Google Scholar 

  • Simon, H. (1996). The sciences of the artificial. Cambridge: MIT Press.

    Google Scholar 

  • Simon, H. (1997). Models of bounded rationality: Empirically grounded economic reason (Vol. 3). Cambeidge: MIT Press.

    Google Scholar 

  • Slaughter, R., Inayatullah, S., & Ramos, J. (2005). The knowledge base of futures studies. Professional edition. Foresight International, Brisbane. www.foresightinternational.com.au.

  • Suwignjo, P., Bititci, U., & Carrie, A. (2000). Quantitative models for performance measurement system. International Journal of Production Economics, 64(1–3), 231–241.

    Article  Google Scholar 

  • Takano, C., & Aida, M. (2018). Damped oscillation model with frequency-dependent decay rate in social networks. In 2018 International Symposium on Nonlinear Theory and Its Applications (NOLTA2018) (pp. 188–191).

    Google Scholar 

  • Tevis, R. (2010). Creating the future: goal-oriented scenario planning. Futures, 42(4), 337–344.

    Article  Google Scholar 

  • Touraine, A. (1984). Le retour de l’acteur: essai de sociologie.

    Google Scholar 

  • Touraine, A. (1998). Sociology: From systems to actors. In Lecture was presented at Session 2 of Symposium YI. ISA Congress in Montreal.

    Google Scholar 

  • Tsadiras, A. (2008). Comparing the inference capabilities of binary, trivalent and sigmoid fuzzy cognitive maps. Information Sciences, 178(20), 3880–3894.

    Article  Google Scholar 

  • Tsadiras, A., & Bassiliades, N. (2013). RuleML representation and simulation of fuzzy cognitive maps. Expert Systems with Applications, 40(5), 1413–1426.

    Article  Google Scholar 

  • Tsadiras, A., & Margaritis, K. (2007). A new balance degree for fuzzy cognitive maps. In E. s. techniques.

    Google Scholar 

  • Varum, C. A., & Melo, C. (2010). Directions in scenario planning literature—A review of the past decades. Futures, 42(4), 355–369.

    Google Scholar 

  • Van Notten, P. W., Rotmans, J., Van Asselt, M. B., & Rothman, D. S. (2003). An updated scenario typology., 35(5), 423–443.

    Google Scholar 

  • Vidal, R. (2011). El giro epistemológico hermenéutico en la última tradición científica moderna. Cinta de moebio, 40, 22–46.

    Article  Google Scholar 

  • Weimer-Jehle, W. (2006). Cross-impact balances: A system-theoretical approach to cross-impact analysis. Technological Forecasting and Social Change, 73(4), 334–361.

    Article  Google Scholar 

  • Wright, G., & Goodwin, P. (2009). Decision making and planning under low levels of predictability: Enhancing the scenario method. International Journal of Forecasting, 25(4), 813–825.

    Article  Google Scholar 

  • Yager, R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on systems, Man, and Cybernetics, 18(1), 183–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy set. Information and Control, 8, 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, J., & Hipel, K. (2012). Multiple stages grey target decision making method with incomplete weight based on multi-granularity linguistic label. Information Sciences, 212, 15–32.

    Article  Google Scholar 

  • Ziv, G., Watson, E., Young, D., Howard, D., Larcom, S., & Tanentzap, A. (2018). The potential impact of Brexit on the energy, water and food nexus in the UK: A fuzzy cognitive mapping approach. Applied Energy, 2(10), 487–498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Trujillo-Cabezas .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trujillo-Cabezas, R., Verdegay, J.L. (2020). Modeling and Simulation of the Future. In: Integrating Soft Computing into Strategic Prospective Methods. Studies in Fuzziness and Soft Computing, vol 387. Springer, Cham. https://doi.org/10.1007/978-3-030-25432-2_5

Download citation

Publish with us

Policies and ethics