Skip to main content

Improvement of Sleep Spindle Detection by Aggregation Techniques

  • Conference paper
  • First Online:
  • 132 Accesses

Part of the book series: IFMBE Proceedings ((IFMBE,volume 76))

Abstract

The study focuses on automatic sleep spindle detection. Plenty of methods have been proposed in previous decades. However, there is still space for improvement. In this study, we investigate aggregation methods such as voting to achieve better results. We employ an unweighted model and two weighted voting models in which assigned weights represent reliability of automatic detectors. First weighted model utilizes supervised approach based on logistic regression. The second one applies unsupervised generative Bayesian model often used in crowdsourcing. Using the expectation maximization algorithm, we uncover hidden true labels and weighs of detectors. We test methods on the real world datasets. The aggregation method overcome single detectors on 10% on average in terms of F1. Moreover, a probabilistic explanation of weights could be used in applications for visual analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmed, B., Redissi, A., Tafreshi, R.: An automatic sleep spindle detector based on wavelets and the teager energy operator. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2596–2599, September 2009

    Google Scholar 

  2. Born, J., Rasch, B., Gais, S.: Sleep to remember. Neuroscientist 12(5), 410–424 (2006). https://doi.org/10.1177/1073858406292647. pMID: 16957003

    Article  Google Scholar 

  3. Devuyst, S., Dutoit, T., Stenuit, P., Kerkhofs, M.: Automatic sleep spindles detection – overview and development of a standard proposal assessment method. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1713–1716, August 2011

    Google Scholar 

  4. Duman, F., Erdamar, A., Erogul, O., Telatar, Z., Yetkin, S.: Efficient sleep spindle detection algorithm with decision tree. Expert Syst. Appl. 36(6), 9980–9985 (2009). http://www.sciencedirect.com/science/article/pii/S0957417409001055

    Article  Google Scholar 

  5. Gais, S., Mölle, M., Helms, K., Born, J.: Learning-dependent increases in sleep spindle density. J. Neurosci. 22(15), 6830–6834 (2002). http://www.jneurosci.org/content/22/15/6830

    Article  Google Scholar 

  6. Gennaro, L.D., Ferrara, M.: Sleep spindles: an overview. Sleep Med. Rev. 7(5), 423–440 (2003). http://www.sciencedirect.com/science/article/pii/S1087079202902522

    Article  Google Scholar 

  7. Huupponen, E., Gomez-Herrero, G., Saastamoinen, A., Värri, A., Hasan, J., Himanen, S.L.: Development and comparison of four sleep spindle detection methods. Artif. Intell. Med. 40(3), 157–170 (2007). http://www.sciencedirect.com/science/article/pii/S0933365707000516

    Article  Google Scholar 

  8. Kantchelian, A., Tschantz, M.C., Afroz, S., Miller, B., Shankar, V., Bachwani, R., Joseph, A.D., Tygar, J.D.: Better malware ground truth: techniques for weighting anti-virus vendor labels. In: Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, AISec 2015, pp. 45–56. ACM, New York (2015). http://doi.acm.org/10.1145/2808769.2808780

  9. Lacourse, K., Delfrate, J., Beaudry, J., Peppard, P., Warby, S.C.: A sleep spindle detection algorithm that emulates human expert spindle scoring. J. Neurosc. Methods 316, 3–11 (2019). http://www.sciencedirect.com/science/article/pii/S0165027018302504, methods and models in sleep research: A Tribute to Vincenzo Crunelli

    Article  Google Scholar 

  10. Liu, M.Y., Huang, A., Huang, N.E.: Evaluating and improving automatic sleep spindle detection by using multi-objective evolutionary algorithms. Front. Hum. Neurosci. 11, 261 (2017). https://www.frontiersin.org/article/10.3389/fnhum.2017.00261

    Article  Google Scholar 

  11. Martin, N., Lafortune, M., Godbout, J., Barakat, M., Robillard, R., Poirier, G., Bastien, C., Carrier, J.: Topography of age-related changes in sleep spindles. Neurobiol. Aging 34(2), 468–476 (2013). http://www.sciencedirect.com/science/article/pii/S019745801200320X

    Article  Google Scholar 

  12. Mölle, M., Marshall, L., Gais, S., Born, J.: Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J. Neurosci. 22(24), 10941–10947 (2002). http://www.jneurosci.org/content/22/24/10941

    Article  Google Scholar 

  13. O’Reilly, C., Nielsen, T.: Automatic sleep spindle detection: benchmarking with fine temporal resolution using open science tools. Front. Hum. Neurosci. 9, 353 (2015). https://www.frontiersin.org/article/10.3389/fnhum.2015.00353

    Google Scholar 

  14. Parekh, A., Selesnick, I.W., Osorio, R.S., Varga, A.W., Rapoport, D.M., Ayappa, I.: Multichannel sleep spindle detection using sparse low-rank optimization. J. Neurosci. Methods 288, 1–16 (2017). http://www.sciencedirect.com/science/article/pii/S0165027017301681

    Article  Google Scholar 

  15. Raykar, V.C., Yu, S., Zhao, L.H., Jerebko, A., Florin, C., Valadez, G.H., Bogoni, L., Moy, L.: Supervised learning from multiple experts: Whom to trust when everyone lies a bit. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 889–896. ACM, New York (2009). http://doi.acm.org/10.1145/1553374.1553488

  16. Reynolds, C., Short, M., Gradisar, M.: Sleep spindles and cognitive performance across adolescence: a meta-analytic review. J. Adolesc. 66, 55–70 (2018). http://www.sciencedirect.com/science/article/pii/S0140197118300599

    Article  Google Scholar 

  17. Wamsley, E.J., Tucker, M.A., Shinn, A.K., Ono, K.E., McKinley, S.K., Ely, A.V., Goff, D.C., Stickgold, R., Manoach, D.S.: Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Bio. Psychiatr. 71(2), 154–161 (2012). http://www.sciencedirect.com/science/article/pii/S0006322311008146, functional Consequences of Altered Cortical Development in Schizophrenia

    Article  Google Scholar 

  18. Warby, S.C., Wendt, S.L., Welinder, P., Munk, E.G., Carrillo, O., Sorensen, H.B.D., Jennum, P., Peppard, P.E., Perona, P., Mignot, E.: Sleep spindle detection: crowdsourcing and evaluating performance of experts, non-experts, and automated methods. In: Nature Methods (2014)

    Google Scholar 

Download references

Acknowledgment

Research was supported by the project Temporal context in analysis of long-term non-stationary multidimensional signal, Register Number 17-20480S of the Grant Agency of the Czech Republic. This work was also supported by the Charles University research program PROGRES Q35, by the project No. LO1611 with financial support from the MEYS under the NPU I program and by the Ministry of Health of the Czech Republic, grant No. NV18-07-00272. All rights reserved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaveta Saifutdinova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saifutdinova, E., Dudysova, D., Gerla, V., Lhotska, L. (2020). Improvement of Sleep Spindle Detection by Aggregation Techniques. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics