Skip to main content

Potentials of OCT in Monitoring Ocular Hemodynamics of Patients with Primary Open Angle Glaucoma

  • Conference paper
  • First Online:
Book cover XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 (MEDICON 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 76))

Abstract

Approaches to using optical coherence tomography (OCT) for ocular hemodynamics monitoring in patients with primary open angle glaucoma (POAG) are presented. The existing OCT systems used in ophthalmology are described. The different OCT systems are compared in accuracy and resolution characteristics, as these are important for clinical studies. The results of ocular hemodynamics monitoring of POAG patients using Spectralis OCT2 with an OCT Angiography module are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morizane, Y., Morimoto, N., Fujiwara, A., et al.: Incidence and causes of visual impairment in Japan: the first nation-wide complete enumeration survey of newly certified visually impaired individuals. Jpn. J. Ophthalmol. 63(1), 26–33 (2019)

    Article  Google Scholar 

  2. Quigley, H.A.: Glaucoma: macrocosm to microcosm, the Frieden wald lecture. Invest. Ophthalmol. Vis. Sci. 46, 2662–2670 (2005)

    Article  Google Scholar 

  3. Fechtner, R.D., Weinreb, R.N.: Mechanisms of optic nerve damage in primary open angle glaucoma. Surv. Ophthalmol. 39(1), 23–42 (1994)

    Article  Google Scholar 

  4. Schmetterer, L.: Ocular Blood Flow, pp. 147–159. Springer, New York (2012)

    Book  Google Scholar 

  5. Lieb, W.E.: Color Doppler ultrasonography of the eye and orbit. CurrentOpin. Ophthalmol. 4, 68–75 (1993)

    Google Scholar 

  6. Flammer, J., Orgul, S., Costa, V.P., et al.: The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 21, 359–393 (2002)

    Article  Google Scholar 

  7. Kiseleva, T.N., Kotelin, V.I., Losanova, O.A., Lugovkina, K.V.: Noninvasive methods assessment blood flow in anterior segment and clinical application perspective. Oftalmologiya 15(4), 283–290 (2017). https://doi.org/10.18008/1816-5095-2017-4-283-290

    Article  Google Scholar 

  8. Straubhaar, M., Orgul, S., Gugleta, K., et al.: Choroidal laser Doppler flowmetry in healthy subjects. Arch. Ophthalmol. 118(2), 211–215 (2000)

    Article  Google Scholar 

  9. Kurysheva, N.I., Parshunina, O.A., Shatalova, E.O., et al.: Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr. Eye Res. 42(3), 411–417 (2017)

    Article  Google Scholar 

  10. Weinreb, R., Harris, A.: Ocular Blood Flow in Glaucoma: The 6th Consensus Report of the World Glaucoma Association, pp. 1–159. Kugler Publications, Amsterdam (2009)

    Google Scholar 

  11. Liu, L., Jia, Y., Takusagawa, H.L., et al.: Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 133(9), 1045 (2015)

    Article  Google Scholar 

  12. Kurysheva, N.I., Maslova, E.V.: Optical coherence tomography angiography in glaucoma diagnosis. Vestn. oftalmol. 132(5), 98–102 (2016)

    Article  Google Scholar 

  13. Popescu, D.P., Choo-Smith, L.-P., Flueraru, C., Mao, Y., Chang, S., Disano, J., Sowa, M.G.: Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications. Biophys. Rev. 3(3), 155–169 (2011)

    Article  Google Scholar 

  14. Grulkpwski, I., et al.: Scanning protocols dedicated to smart velocity ranging in Spectral OCT. Opt. Express 17, 23736–23754 (2009)

    Article  Google Scholar 

  15. Hendargo, H.C., McNabb, R.P., Dhalla, A.H., Shepherd, N., Izatt, J.A.: Doppler velocity detection limitations in spectrometer – based versus swept – source optical coherence tomography. Biomed. Opt. Express 2, 2175–2188 (2011)

    Article  Google Scholar 

  16. Wang, R.K., et al.: Three dimensional optical angiography. Opt. Express 15, 4083–4097 (2007)

    Article  Google Scholar 

  17. Motaghiannezam, R., Fraser, S.: Logarithmic intensity and speacle – based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography. Biomed. Opt. Express 3, 503–521 (2012)

    Article  Google Scholar 

  18. Jia, Y., et al.: Split – spectrum amplitude – decorrelation angiography with optical coherence tomography. Opt. Express 20, 4710–4725 (2012)

    Article  Google Scholar 

  19. Tokayer, J., Jia, Y., Dhalla, A.H., Huang, D.: Blood flow velocity quantification using split – spectrum amplitude decorrelation angiography with optical coherence tomography. Biomed. Opt. Express 4, 1909–1924 (2013)

    Article  Google Scholar 

  20. Margolis, R., Spaide, R.F.: A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am. J. Ophthalmol. 147(5), 811–815 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kiseleva .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest. The paper was supported by a grant from RFBR (No. 18-08-01192).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iomdina, E.N., Khoziev, D.D., Kiseleva, A.A., Luzhnov, P.V., Kiseleva, O.A., Shamaev, D.M. (2020). Potentials of OCT in Monitoring Ocular Hemodynamics of Patients with Primary Open Angle Glaucoma. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics