Skip to main content

A Hybrid TLBO Algorithm by Quadratic Approximation for Function Optimization and Its Application

  • Chapter
  • First Online:
Recent Trends and Advances in Artificial Intelligence and Internet of Things

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 172))

Abstract

Recently hybrid optimization algorithms enjoy growing attention in the optimization community. However, over the last two decades, many new hybrid meta-heuristics optimization techniques are developed and are still developing. On the hybrid optimization algorithm, the most common criticism is that they are not well balanced in respect of the local search and global search of the algorithm. Viewing this, in the present work a modified adaptive based teaching factor is suggested for the basic TLBO algorithm. Also, a novel hybrid approach is proposed that combines the Teaching Learning Base Optimization (TLBO) Algorithm and Quadratic approximation (QA). The QA is applied to improve the global as well as local search capability of the method that also represents the characters of “Teacher Refresh”. For the performance investigation, the suggested algorithm is involved to solve twenty classical optimization functions and one real life optimization problem and the performances are differentiated with different state-of-the-arts methods in terms of numerical results of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceeding of the IEEE International Conference on Neural Networks, 1995, 1942–1948

    Google Scholar 

  2. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE International Conference on Computational Intelligence, pp. 69–73 (1998)

    Google Scholar 

  3. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)

    Google Scholar 

  4. Dorigo, M.: Optimization, Learning and Natural Algorithms. Thesis (Ph.D.), Politecnico di Milano (1992)

    Google Scholar 

  5. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)

    Article  MATH  Google Scholar 

  7. Akay, B., Karaboga, D.: Artificial bee colony algorithm for large-scale problems and engineering design optimization. J. Intell. Manuf. (2010). https://doi.org/10.1007/s10845-010-0393-4

  8. Akay, B., Karaboga, D.: A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Appl. Soft Comput. (2010). https://doi.org/10.1016/j.asoc.2010.12.001

  9. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43, 303–315 (2011)

    Article  Google Scholar 

  10. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  11. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of IEEE Congress Evolutionary Computation, Honolulu, HI, 2002, pp. 1671–1676

    Google Scholar 

  12. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8, 204–210 (2004)

    Article  Google Scholar 

  13. Parsopoulos, K.E., Vrahatis, M.N.: UPSO—a unified particle swarm optimization scheme. Lect. Ser. Comput. Sci. 1, 868–873 (2004)

    Google Scholar 

  14. Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-distance-ratio based particle swarm optimization. In: Proceedings of Swarm Intelligence Symposium, pp. 174–181 (2003)

    Google Scholar 

  15. van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8, 225–239 (2004)

    Article  Google Scholar 

  16. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3) (2006)

    Google Scholar 

  17. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(April), 398–417 (2009)

    Article  Google Scholar 

  18. Iorio, A., Li, X.: Solving rotated multi-objective optimization problems using differential evolution. In: Australian Conference on Artificial Intelligence, Cairns, Australia, 2004, pp. 861–872

    Google Scholar 

  19. Storn, R.: On the usage of differential evolution for function optimization. In: Biennial Conference of the North American Fuzzy Information Processing Society (NAFIPS), pp. 519–523. IEEE, Berkeley (1996)

    Google Scholar 

  20. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11, 1679–1696 (2011)

    Article  Google Scholar 

  21. Pant, M., Thangaraj, R.: DE-PSO: a new hybrid meta-heuristic for solving global optimization problems. New Math. Nat. Comput. 7(3), 363–381 (2011)

    Article  MathSciNet  Google Scholar 

  22. Deep, K., Das, K.N.: Quadratic approximation based hybrid genetic algorithm for function optimization. Appl. Math. Comput. 203, 86–98 (2008)

    MATH  Google Scholar 

  23. Abd-El-Wahed, W.F., Mousa, A.A., El-Shorbagy, M.A.: Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems. J. Comput. Appl. Math. 235, 1446–1453 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, L., Li, H., Jiao, Y.-C., Zhang, F.-S.: Hybrid differential evolution and the simplified quadratic interpolation for global optimization. Copyright is held by the author/owner(s). GEC’09, 12–14 June 2009, Shanghai, China. ACM 978-1-60558-326-6/09/06

    Google Scholar 

  25. Mirjalili, S., Mohd Hashim, S.Z.: A new hybrid PSOGSA algorithm for function optimization. In: International Conference on Computer and Information Application, ICCIA 2010

    Google Scholar 

  26. Deep, K., Bansal, J.C.: Hybridization of particle swarm optimization with quadratic approximation. OPSEARCH 46(1), 3–24

    Google Scholar 

  27. Pant, M., Thangaraj, R., Abraham, A.: A new PSO algorithm with crossover operator for global optimization problems. Innov. Hybrid Intell. Syst., ASC 44, 215–222 (2007)

    Article  Google Scholar 

  28. Nama, S., Saha, A.K., Ghosh, S.: A new ensemble algorithm of differential evolution and backtracking search optimization algorithm with adaptive control parameter for function optimization. Int. J. Ind. Eng. Comput. 7, 323–338 (2016)

    Google Scholar 

  29. Nama, S., Saha, A.K., Ghosh, S.: A hybrid symbiosis organisms search algorithm and its application to real world problems. Memetic Comput. (2016). https://doi.org/10.1007/s12293-016-0194-1

  30. Satapathy, S.C., Naik, A.: A modified teaching-learning-based optimization (mTLBO) for global search. Recent Pat. Comput. Sci. 6, 60–72 (2013)

    Article  Google Scholar 

  31. Satapathy, S.C., Naik, A., Parvathi, K.: A teaching learning based optimization based on orthogonal design for solving global optimization problems

    Google Scholar 

  32. Rao, R.V., Patel, V.: Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Int. J. Ind. Eng. Comput. 4, 29–50 (2013)

    Google Scholar 

  33. Satapathy, S.C., Naik, A., Parvathi, K.: Weighted teaching-learning-based optimization for global function optimization. Appl. Math. 4, 429–439 (2013)

    Article  Google Scholar 

  34. Nayak, M.R., Nayak, C.K., Rout, P.K.: Application of multi-objective teaching learning based optimization algorithm to optimal power flow problem. In: 2nd International Conference on Communication, Computing & Security [ICCCS-2012], Procedia Technology, vol. 6, pp. 255–264 (2012)

    Google Scholar 

  35. Xia, K., et al.: Disassembly sequence planning using a simplified teaching–learning-based optimization algorithm. Adv. Eng. Inform. (2014). http://dx.doi.org/10.1016/j.aei.2014.07.00

  36. Roy, P.K., Paul, C., Sultana, S.: Oppositional teaching learning based optimization approach for combined heat and power dispatch. Electr. Power Energy Syst. 57, 392–403 (2014)

    Article  Google Scholar 

  37. Roy, P.K., Sur, A., Pradhan, D.K.: Optimal short-term hydro-thermal scheduling using quasi-oppositional teaching learning based optimization. Eng. Appl. Artif. Intell. 26, 2516–2524 (2013)

    Google Scholar 

  38. Venkata Rao, R.: Teaching Learning Based Optimization Algorithm: And Its Engineering Applications, 1st edn. Springer Publishing Company, Incorporated (2015)

    Google Scholar 

  39. Jiang, X., Zhou, J.: Hybrid DE-TLBO algorithm for solving short term hydro-thermal optimal scheduling with incommensurable objectives. In: Proceedings of the 32nd Chinese Control Conference, 26–28 July 2013, Xian, China

    Google Scholar 

  40. Xie, Z., Zhang, C., Shao, X., Lin, W., Zhu, H.: An effective hybrid teaching–learning-based optimization algorithm for permutation flow shop scheduling problem. Adv. Eng. Softw. 77, 35–47 (2014)

    Google Scholar 

  41. Azad-Farsani, E., Zare, M., Azizipanah-Abarghooee, R., Askarian-Abyaneh, H.: A new hybrid CPSO-TLBO optimization algorithm for distribution network reconfiguration. J. Intell. Fuzzy Syst. 26(5), 2175–2184 (2014). https://doi.org/10.3233/IFS-130892

    Article  MATH  Google Scholar 

  42. Dokeroglu, T.: Hybrid teaching–learning-based optimization algorithms for the quadratic assignment problem. Comput. Ind. Eng. 85, 86–101 (2015)

    Article  Google Scholar 

  43. Gnanambal, K., Jeyavelumani, K.R., Juriya Banu, H.: Optimal, power flow using hybrid teaching learning based optimization algorithm. GRD Journals. Global Research and Development Journal for Engineering. International Conference on Innovations in Engineering and Technology, (ICIET)—2016, July 2016. e-ISSN: 2455-5703

    Google Scholar 

  44. Khare, R., Kumar, Y.: A novel hybrid MOL–TLBO optimized techno-economic-socio analysis of renewable energy mix in island mode. Appl. Soft Comput. 43, 187–198 (2016)

    Article  Google Scholar 

  45. Sahu, B.K., Pati, T.K., Nayak, J.R., Panda, S., Kar, S.K.: A novel hybrid LUS–TLBO optimized fuzzy-PID controller for load frequency control of multi-source power system. Int. J. Electr. Power Energy Syst. 74, 58–69 (2016)

    Article  Google Scholar 

  46. Babazadeh, R., Tavakkoli-Moghaddam, R.: A hybrid GA-TLBO algorithm for optimizing a capacitated three-stage supply chain network. Int. J. Ind. Eng. Prod. Res. 28, 151–161 (2017)

    Google Scholar 

  47. Deb, S., Kalita, K., Gao, X., Tammi, K., Mahanta, P.: Optimal placement of charging stations using CSO-TLBO algorithm. In: 2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Kolkata, pp. 84–89 (2017)

    Google Scholar 

  48. Patsariya, A., et al.: Implementation of noble TLBO-MPPT technique for SPV in hybrid DC-DC boost converter. In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), pp. 1622–1627 (2017)

    Google Scholar 

  49. Shahbeig, S., Helfroush, M.S., Rahideh, A.: A fuzzy multi-objective hybrid TLBO–PSO approach to select the associated genes with breast cancer. Signal Process. 131, 58–65 (2017)

    Article  Google Scholar 

  50. Tuo, S., Yong, L., Deng, F., Li, Y., Lin, Y., Lu, Q.: HSTLBO: a hybrid algorithm based on harmony search and teaching-learning-based optimization for complex high-dimensional optimization problems. PLoS ONE 12(4), e0175114 (2017). https://doi.org/10.1371/journal.pone.0175114

    Article  Google Scholar 

  51. Ding, Y., et al.: A novel hybrid teaching learning based optimization algorithm for function optimization. In: 2017 Chinese Automation Congress (CAC), pp. 4383–4388 (2017)

    Google Scholar 

  52. Singh, R., Chaudhary, H., Singh, A.K.: A new hybrid teaching–learning particle swarm optimization algorithm for synthesis of linkages to generate path. Sadhana 42(11), 1851–1870 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Chen, X., Xu, B., Yu, K., Du, W.: Teaching-learning-based optimization with learning enthusiasm mechanism and its application in chemical engineering. J. Appl. Math. (2018). https://doi.org/10.1155/2018/1806947

  54. Nenavath, H., Jatoth, R.K.: Hybrid SCA–TLBO: a novel optimization algorithm for global optimization and visual tracking. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3376-6

  55. Zhang, M., Pan, Y., Zhu, J., Chen, G.: BC-TLBO: a hybrid algorithm based on artificial bee colony and teaching-learning-based optimization, pp. 2410–2417 (2018). https://doi.org/10.23919/chicc.2018.8483829

  56. Sevinç, E., Dökeroğlu, T.: A novel hybrid teaching-learning-based optimization algorithm for the classification of data by using extreme learning machines. Turk. J. Electr. Eng. Comput. Sci. 27, 1523–1533 (2019). https://doi.org/10.3906/elk-1802-40

    Article  Google Scholar 

  57. Guo, C., Lu, J., Tian, Z., Guo, W., Darvishan, A.: Optimization of critical parameters of PEM fuel cell using TLBO-DE based on Elman neural network. Energy Convers. Manag. 183, 149–158 (2019)

    Article  Google Scholar 

  58. Zhang, Q., Yu, G., Song, H.: A hybrid bird mating optimizer algorithm with teaching-learning-based optimization for global numerical optimization. Stat. Optim. Inf. Comput. 3 (2015). https://doi.org/10.19139/soic.v3i1.86

  59. Tang, Q., Li, Z., Zhang, L.P., Zhang, C.: Balancing stochastic two-sided assembly line with multiple constraints using hybrid teaching-learning-based optimization algorithm. Comput. Oper. Res. 82, 102–113 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  60. Shao, W., Pi, D., Shao, Z.: A hybrid discrete optimization algorithm based on teaching–probabilistic learning mechanism for no-wait flow shop scheduling. Knowl.-Based Syst. 107, 219–234 (2016)

    Article  Google Scholar 

  61. Shao, W., Pi, D., Shao, Z.: A hybrid discrete teaching-learning based meta-heuristic for solving no-idle flow shop scheduling problem with total tardiness criterion. Comput. Oper. Res. 94, 89–105 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. Das, S.P., Padhy, S.: A novel hybrid model using teaching–learning-based optimization and a support vector machine for commodity futures index forecasting. Int. J. Mach. Learn. Cyber. 9, 97 (2018). https://doi.org/10.1007/s13042-015-0359-0

    Article  Google Scholar 

  63. González-Álvarez, D.L., Vega-Rodríguez, M.A., Rubio-Largo, Á.: Finding patterns in protein sequences by using a hybrid multiobjective teaching learning based optimization algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(3), 656–666 (2015)

    Article  Google Scholar 

  64. Chen, D., Zou, F., Wang, J., et al.: A multi-class cooperative teaching–learning-based optimization algorithm with simulated annealing. Soft Comput. 20, 1921 (2016). https://doi.org/10.1007/s00500-015-1613-9

    Article  Google Scholar 

  65. Zou, F., Wang, L., Hei, X., Chen, D., Jiang, Q., Li, H.: Bare-bones teaching-learning-based optimization. Sci. World J. 2014, 17p (2014). Article ID 136920. https://doi.org/10.1155/2014/136920

  66. Ghasemi, M., Taghizadeh, M., Ghavidel, S., Aghaei, J., Abbasian, A.: Solving optimal reactive power dispatch problem using a novel teaching–learning-based optimization algorithm. Eng. Appl. Artif. Intell. 39, 100–108 (2015)

    Article  Google Scholar 

  67. Wang, L., Zou, F., Hei, X., et al.: A hybridization of teaching–learning-based optimization and differential evolution for chaotic time series prediction. Neural Comput. Appl. 25, 1407 (2014). https://doi.org/10.1007/s00521-014-1627-8

    Article  Google Scholar 

  68. Ghasemi, M., Ghanbarian, M.M., Ghavidel, S., Rahmani, S., Moghaddam, E.M.: Modified teaching learning algorithm and double differential evolution algorithm for optimal reactive power dispatch problem: a comparative study. Inf. Sci. 278, 231–249 (2014)

    Article  MathSciNet  Google Scholar 

  69. Zou, F., Wang, L., Chen, D., Hei, X.: An improved teaching-learning-based optimization with differential learning and its application. Math. Probl. Eng. 2015, 19p (2015). Article ID 754562. http://dx.doi.org/10.1155/2015/754562

  70. Dib, F., Boumhidi, I.: Hybrid algorithm DE–TLBO for optimal H∞ and PID control for multi-machine power system. Int. J. Syst. Assur. Eng. Manag. (2017). https://doi.org/10.1007/s13198-016-0550-z

    Article  Google Scholar 

  71. Turgut, O.E., Coban, M.T.: Optimal proton exchange membrane fuel cell modelling based on hybrid teaching learning based optimization–differential evolution algorithm. Ain Shams Eng. J. 7(1), 347–360 (2016)

    Article  Google Scholar 

  72. Lim, W.H., Isa, N.A.M.: Teaching and peer-learning particle swarm optimization. Appl. Soft Comput. 18, 39–58 (2014)

    Article  Google Scholar 

  73. Lim, W.H., Isa, N.A.M.: Bidirectional teaching and peer-learning particle swarm optimization. Inf. Sci. 280, 111–134 (2014)

    Article  Google Scholar 

  74. Cheng, T., Chen, M., Fleming, P.J., et al.: A novel hybrid teaching learning based multi-objective particle swarm optimization. Neuro Comput. 222, 11–25 (2017)

    Google Scholar 

  75. Azizipanah-Abarghooee, R., Niknam, T., Bavafa, F., Zare, M.: Short-term scheduling of thermal power systems using hybrid gradient based modified teaching–learning optimizer with black hole algorithm. Electr. Power Syst. Res. 108, 16–34 (2014)

    Article  Google Scholar 

  76. Güçyetmez, M., Çam, E.: A new hybrid algorithm with genetic-teaching learning optimization (G-TLBO) technique for optimizing of power flow in wind-thermal power systems. Electr. Eng. 98, 145 (2016). https://doi.org/10.1007/s00202-015-0357-y

    Article  Google Scholar 

  77. Chen, X., Bin, X., Mei, C., Ding, Y., Li, K.: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation. Appl. Energy 212, 1578–1588 (2018)

    Article  Google Scholar 

  78. Tefek, M.F., Uğuz, H., Güçyetmez, M.: A new hybrid gravitational search–teaching–learning-based optimization method for energy demand estimation of Turkey. Neural Comput. Appl. (2017). https://doi.org/10.1007/s00521-017-3244-9

  79. Huang, J., Gao, L., Li, X.: An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes. Appl. Soft Comput. 36, 349–356 (2015)

    Article  Google Scholar 

  80. Huang, J., Gao, L., Li, X.: A teaching–learning-based cuckoo search for constrained engineering design problems. Adv. Glob. Optim. (2015). https://doi.org/10.1007/978-3-319-08377-3_37

  81. Tuo, S., Yong, L., Zhou, T.: An improved harmony search based on teaching-learning strategy for unconstrained optimization problems. Math. Probl. Eng. (2013). https://doi.org/10.1155/2013/413565

  82. Mahdad, B., Srairi, K.: Optimal power flow improvement using a hybrid teaching-learning-based optimization and pattern search. Int. J. Mod. Educ. Comput. Sci. 10, 55–70 (2018). https://doi.org/10.5815/ijmecs.2018.03.07

    Article  Google Scholar 

  83. Mohan, C., Shanker, K.: A random search technique for global optimization based on quadratic approximation. Asia Pac. J. Oper. Res. 11, 93–101 (1994)

    MATH  Google Scholar 

  84. Ali, M.M., Torn, A., Viitanen, S.: A numerical comparison of some modified controlled random search algorithms. J. Glob. Optim. 11, 377–385 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  85. Venkata Rao, R., Patel, V.: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Appl. Math. Model. 37, 1147–1162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  86. Venkata Rao, R., Patel, V.: Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm. Eng. Appl. Artif. Intell. 26, 430–445 (2013)

    Article  Google Scholar 

  87. Crepinsek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)

    Google Scholar 

  88. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219, 8121–8144 (2013)

    MathSciNet  MATH  Google Scholar 

  89. Nasir, M., Das, S., Maity, D., Sengupta, S., Halder, U., Suganthan, P.N.: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf. Sci. 209, 16–36 (2012)

    Article  MathSciNet  Google Scholar 

  90. Das, S., Suganthan, P.N.: Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technol. University, Kolkata, India, 2010

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. P. N. Suganthan, School of Electrical and Electronic Engineering, NTU, Singapore for shearing the source codes of PSO variants. Also thanks to the editors, anonymous referees for their valuable suggestion towards improving the book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanta Nama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nama, S., Saha, A.K., Sharma, S. (2020). A Hybrid TLBO Algorithm by Quadratic Approximation for Function Optimization and Its Application. In: Balas, V., Kumar, R., Srivastava, R. (eds) Recent Trends and Advances in Artificial Intelligence and Internet of Things. Intelligent Systems Reference Library, vol 172. Springer, Cham. https://doi.org/10.1007/978-3-030-32644-9_30

Download citation

Publish with us

Policies and ethics