Skip to main content

Feature Selection Is Important: State-of-the-Art Methods and Application Domains of Feature Selection on High-Dimensional Data

  • Chapter
  • First Online:
Applications in Ubiquitous Computing

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

With the advancement of technologies in the big data field, feature selection plays a vital role in most of the prediction problems and many application domains including healthcare, government sectors, network attacks prediction, microarray data analysis, etc. Nowadays, due to the existence of enormous volume of data with high-dimensional attributes and data types, it has led to a problem to find and classify informative features from noninformative ones. To solve these issues, filter, wrapper, embedded, and hybrid methods are used. In this chapter, we provide a detailed introduction about the feature selection with recent state-of-the-art techniques with respect to filter, wrapper, embedded, and hybrid models and discuss taxonomy of the dimensionality reduction techniques and fuzzy logic-based feature selection techniques. Further, we have given importance to feature selection among various application domains such as text analytics, video analytics, audio analytics, microarray analysis, intrusion detection systems, and feature selection in stream data analysis. Finally, we conclude by explaining application domains of feature selection with elaborate discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolon-Canedo, V., Sanchez-Marono, N., Alonso-Betanzos, A., Benitez, J. M., & Herrera, F. (2014). A review of microarray datasets and applied feature selection methods. Information Sciences, 282, 111–135.

    Article  Google Scholar 

  2. Wang, H., Tan, L., & Niu, B. (2019). Feature selection for classification of microarray gene expression cancers using bacterial colony optimization with multi-dimensional population. Swarm and Evolutionary Computation, 48, 172–181.

    Article  Google Scholar 

  3. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Benítez, J. M., & Herrera, F. (2019). A review of microarray datasets and applied feature selection methods. Information Sciences, 282, 111–135.

    Article  Google Scholar 

  4. Ang, J. C., Mirzal, A., Haron, H., & Hamed, H. N. A. (2019). Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13, 971–989.

    Article  Google Scholar 

  5. Nematzadeh, H., Enayatifar, R., Mahmud, M., & Akbari, E. (2019, January 17). Frequency based feature selection method using whale algorithm. Genomics, 111, 1946–1955.

    Article  Google Scholar 

  6. González, J., Ortega, J., Damas, M., Martín-Smith, P., & Gan, J. Q. (2019). A new multi-objective wrapper method for feature selection–accuracy and stability analysis for BCI. Neurocomputing, 333, 407–418.

    Article  Google Scholar 

  7. Kumar, L., & Bharti, K. K. (2019). An improved BPSO algorithm for feature selection. In Recent trends in communication, computing, and electronics (pp. 505–513). Singapore: Springer.

    Chapter  Google Scholar 

  8. Cilia, N. D., De Stefano, C., Fontanella, F., & di Freca, A. S. (2019). A ranking-based feature selection approach for handwritten character recognition. Pattern Recognition Letters, 121, 77–86.

    Article  Google Scholar 

  9. Rendall, R., Castillo, I., Schmidt, A., Chin, S. T., Chiang, L. H., & Reis, M. (2019). Wide spectrum feature selection (WiSe) for regression model building. Computers & Chemical Engineering, 121, 99–110.

    Article  Google Scholar 

  10. Mafarja, M., Aljarah, I., Faris, H., Hammouri, A. I., Ala’M, A. Z., & Mirjalili, S. (2019). Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Systems with Applications, 117, 267–286.

    Article  Google Scholar 

  11. Xiong, C. Z., Su, M., Jiang, Z., & Jiang, W. (2019). Prediction of hemodialysis timing based on LVW feature selection and ensemble learning. Journal of Medical Systems, 43(1), 18.

    Article  Google Scholar 

  12. Singh, A., & Jain, A. (2019). Adaptive credit card fraud detection techniques based on feature selection method. In Advances in computer communication and computational sciences (pp. 167–178). Singapore: Springer.

    Chapter  Google Scholar 

  13. Sayed, G. I., Hassanien, A. E., & Azar, A. T. (2019). Feature selection via a novel chaotic crow search algorithm. Neural Computing and Applications, 31(1), 171–188.

    Article  Google Scholar 

  14. Anter, A. M., Azar, A. T., & Fouad, K. M. (2019, March). Intelligent hybrid approach for feature selection. In International conference on Advanced Machine Learning Technologies and Applications (pp. 71–79). Cham: Springer.

    Google Scholar 

  15. Chiew, K. L., Tan, C. L., Wong, K., Yong, K. S., & Tiong, W. K. (2019). A new hybrid ensemble feature selection framework for machine learning-based phishing detection system. Information Sciences, 484, 153–166.

    Article  Google Scholar 

  16. Al-Tashi, Q., Kadir, S. J. A., Rais, H. M., Mirjalili, S., & Alhussian, H. (2019). Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access, 7, 39496–39508.

    Article  Google Scholar 

  17. Zheng, Y., Li, Y., Wang, G., Chen, Y., Xu, Q., Fan, J., & Cui, X. (2019). A novel hybrid algorithm for feature selection based on whale optimization algorithm. IEEE Access, 7, 14908–14923.

    Article  Google Scholar 

  18. Arora, S., Singh, H., Sharma, M., Sharma, S., & Anand, P. (2019). A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection. IEEE Access, 7, 26343–26361.

    Article  Google Scholar 

  19. Mohan, C., & Nagarajan, S. (2019). An improved tree model based on ensemble feature selection for classification. Turkish Journal of Electrical Engineering and Computer Sciences, 27(2), 1290–1307.

    Article  Google Scholar 

  20. Song, X., Waitman, L. R., Hu, Y., Yu, A. S., Robins, D., & Liu, M. (2019). Robust clinical marker identification for diabetic kidney disease with ensemble feature selection. Journal of the American Medical Informatics Association, 26(3), 242–253.

    Article  Google Scholar 

  21. Bui, D. T., Tsangaratos, P., Ngo, P. T. T., Pham, T. D., & Pham, B. T. (2019). Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Science of the Total Environment, 668, 1038–1054.

    Article  Google Scholar 

  22. Fan, S., Tang, J., Tian, Q., & Wu, C. (2019). A robust fuzzy rule based integrative feature selection strategy for gene expression data in TCGA. BMC Medical Genomics, 12(1), 14.

    Article  Google Scholar 

  23. Jiménez, F., Martínez, C., Marzano, E., Palma, J., Sánchez, G., & Sciavicco, G. (2019). Multi-objective evolutionary feature selection for fuzzy classification. IEEE Transactions on Fuzzy Systems, 27, 1085–1099.

    Article  Google Scholar 

  24. Dzulkalnine, M. F., & Sallehuddin, R. (2019). Missing data imputation with fuzzy feature selection for diabetes dataset. SN Applied Sciences, 1(4), 362.

    Article  Google Scholar 

  25. Arefnezhad, S., Samiee, S., Eichberger, A., & Nahvi, A. (2019). Driver drowsiness detection based on steering wheel data applying adaptive neuro-fuzzy feature selection. Sensors, 19(4), 943.

    Article  Google Scholar 

  26. Guru, D. S., Suhil, M., Raju, L. N., & Kumar, N. V. (2018). An alternative framework for univariate filter based feature selection for text categorization. Pattern Recognition Letters, 103, 23–31.

    Article  Google Scholar 

  27. Labani, M., Moradi, P., Ahmadizar, F., & Jalili, M. (2018). A novel multivariate filter method for feature selection in text classification. Engineering Applications of Artificial Intelligence, 70, 25–37.

    Article  Google Scholar 

  28. Mannepalli, K., Sastry, P. N., & Suman, M. (2018). Emotion recognition in speech signals using optimization based multi-SVNN classifier. Journal of King Saud University – Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2018.11.012

  29. Özseven, T. (2019). A novel feature selection method for speech emotion recognition. Applied Acoustics, 146, 320–326.

    Article  Google Scholar 

  30. Srinivasa Murthy, Y. V., & Koolagudi, S. G. (2018). Classification of vocal and non-vocal segments in audio clips using genetic algorithm based feature selection (GAFS). Expert Systems with Applications, 106, 77–91.

    Article  Google Scholar 

  31. Zhang, S., Zhang, S., & Huang, T. (2019). Speech emotion recognition using deep convolutional neural network and discriminant temporal pyramid matching. IEEE Transactions on Multimedia, 20(6), 1576–1590.

    Article  Google Scholar 

  32. Shamim Hossaina, M., & Muhammad, G. (2019). Emotion recognition using deep learning approach from audio–visual emotional big data. Information Fusion, 49, 69–78.

    Article  Google Scholar 

  33. Mao, Q., Dong, M., Huang, Z., & Zhan, Y. (2014). Learning salient features for speech emotion recognition using convolutional neural networks. IEEE Transactions on Multimedia, 16(8), 2203–2213.

    Article  Google Scholar 

  34. Yan, Y., Shen, H., Liu, G., Ma, Z., Gao, C., & Sebe, N. (2014). GLocal tells you more: Coupling GLocal structural for feature selection with sparsity for image and video classification. Computer Vision and Image Understanding, 124, 99–109.

    Article  Google Scholar 

  35. Bampis, C. G., & Bovik, A. C. (2018). Feature-based prediction of streaming video QoE: Distortions, stalling and memory. Signal Processing: Image Communication, 68, 218–228.

    Google Scholar 

  36. Zhou, H., You, M., Liu, L., & Zhuang, C. (2017). Sequential data feature selection for human motion recognition viaMarkov blanket. Pattern Recognition Letters, 86, 18–25.

    Article  Google Scholar 

  37. Benuwaa, B.-B., Zhana, Y., Monney, A., Ghansah, B., & Ansah, E. K. (2019). Video semantic analysis based kernel locality-sensitive discriminative sparse representation. Expert Systems with Applications, 119, 429–440.

    Article  Google Scholar 

  38. Selvakumar, K., Karuppiah, M., SaiRamesh, L., Islac, S. K. H., Hassan, M. M., Fortino, G., & Choo, K.-K. R. (2019). Intelligent temporal classification and fuzzy rough set-based feature selection algorithm for intrusion detection system in WSNs. Information Sciences, 497, 77–90.

    Article  Google Scholar 

  39. Eskandari, S., & Javidi, M. M. (2016). Online streaming feature selection using rough sets. International Journal of Approximate Reasoning, 69, 35–57.

    Article  MathSciNet  MATH  Google Scholar 

  40. AlNuaimi, N., Masud, M. M., Serhani, M. A., & Zaki, N. (2019). Streaming feature selection algorithms for big data: A survey. Applied Computing and Informatics. https://doi.org/10.1016/j.aci.2019.01.001

  41. Zhoua, P., Hua, X., Li, P., & Wu, X. (2019). Online streaming feature selection using adapted neighborhood rough set. Information Sciences, 481, 258–279.

    Article  Google Scholar 

  42. Zhou, P., Hu, X., Li, P., & Wu, X. (2019). OFS-density: A novel online streaming feature selection method. Pattern Recognition, 86, 48–61.

    Article  Google Scholar 

  43. Rahmaninia, M., & Moradi, P. (2019). OSFSMI: Online stream feature selection method based on mutual information. Applied Soft Computing, 68, 733–746.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manikandan, G., Abirami, S. (2021). Feature Selection Is Important: State-of-the-Art Methods and Application Domains of Feature Selection on High-Dimensional Data. In: Kumar, R., Paiva, S. (eds) Applications in Ubiquitous Computing. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-35280-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35280-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35279-0

  • Online ISBN: 978-3-030-35280-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics