Skip to main content

Characterizing the Hypergraph-of-Entity Representation Model

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 882))

Included in the following conference series:

Abstract

The hypergraph-of-entity is a joint representation model for terms, entities and their relations, used as an indexing approach in entity-oriented search. In this work, we characterize the structure of the hypergraph, from a microscopic and macroscopic scale, as well as over time with an increasing number of documents. We use a random walk based approach to estimate shortest distances and node sampling to estimate clustering coefficients. We also propose the calculation of a general mixed hypergraph density based on the corresponding bipartite mixed graph. We analyze these statistics for the hypergraph-of-entity, finding that hyperedge-based node degrees are distributed as a power law, while node-based node degrees and hyperedge cardinalities are log-normally distributed. We also find that most statistics tend to converge after an initial period of accentuated growth in the number of documents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tail and head is used in analogy to an arrow, not a list.

References

  1. Aparicio, D., Ribeiro, P., Silva, F.: Graphlet-orbit transitions (got): a fingerprint for temporal network comparison. PLoS One 13, e0205497 (2018)

    Article  Google Scholar 

  2. Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of separation. CoRR abs/1111.4570 (2011). http://arxiv.org/abs/1111.4570

  3. Bast, H., Buchhold, B.: An index for efficient semantic full-text search. In: Proceedings of the 22nd ACM International Conference on Conference on Information and Knowledge Management, pp. 369–378 (2013). https://doi.org/10.1145/2505515.2505689

  4. Bast, H., Buchhold, B., Haussmann, E., et al.: Semantic search on text and knowledge bases. Found. Trends® Inf. Retrieval 10(2–3), 119–271 (2016)

    Article  Google Scholar 

  5. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the Third International Conference on Weblogs and Social Media, ICWSM 2009, San Jose, California, USA, 17-20 May 2009 (2009). http://aaai.org/ocs/index.php/ICWSM/09/paper/view/154

  6. Berge, C.: Graphes et hypergraphes. Dunod, Paris (1970)

    MATH  Google Scholar 

  7. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid search: Effectively combining keywords and semantic searches. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) European Semantic Web Conference, pp. 554–568. Springer, Berlin (2008)

    Google Scholar 

  8. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: Graphml progress report structural layer proposal. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) International Symposium on Graph Drawing, pp. 501–512. Springer, Berlin (2001)

    Chapter  Google Scholar 

  9. Csardi, G., Nepusz, T., et al.: The igraph software package for complex network research. InterJ. Complex Syst. 1695(5), 1–9 (2006)

    Google Scholar 

  10. Devezas, J., Nunes, S.: Hypergraph-of-entity: a unified representation model for the retrieval of text and knowledge. Open Comput. Sci. 9(1), 103–127 (2019). https://doi.org/10.1515/comp-2019-0006

    Article  Google Scholar 

  11. Estrada, E., Rodriguez-Velazquez, J.A.: Complex networks as hypergraphs. arXiv preprint physics/0505137 (2005)

    Google Scholar 

  12. Fernández, J.D., Martínez-Prieto, M.A., de la Fuente Redondo, P., Gutiérrez, C.: Characterizing RDF datasets. J. Inf. Sci. 1, 1–27 (2016)

    Google Scholar 

  13. Gallagher, S.R., Goldberg, D.S.: Clustering coefficients in protein interaction hypernetworks. In: ACM Conference on Bioinformatics, Computational Biology and Biomedical Informatics, ACM-BCB 2013, Washington, DC, USA, 22-25 September 2013, p. 552 (2013). https://doi.org/10.1145/2506583.2506635

  14. Ge, W., Chen, J., Hu, W., Qu, Y.: Object link structure in the semantic web. In: The Semantic Web: Research and Applications, 7th Extended Semantic Web Conference, ESWC 2010, Heraklion, Crete, Greece, May 30 - June 3 2010, Proceedings, Part II, pp. 257–271 (2010). https://doi.org/10.1007/978-3-642-13489-0_18

    Google Scholar 

  15. Głąbowski, M., Musznicki, B., Nowak, P., Zwierzykowski, P.: Shortest path problem solving based on ant colony optimization metaheuristic. Image Process. Commun. 17(1–2), 7–17 (2012)

    Article  Google Scholar 

  16. Halpin, H.: A query-driven characterization of linked data. In: Proceedings of the WWW2009 Workshop on Linked Data on the Web, LDOW 2009, Madrid, Spain, 20 April 2009. http://ceur-ws.org/Vol-538/ldow2009_paper16.pdf

  17. Himsolt, M.: GML: A portable graph file format. Technical report, Universität Passau (1997)

    Google Scholar 

  18. Klamt, S., Haus, U., Theis, F.J.: Hypergraphs and cellular networks. PLoS Comput. Biol. 5(5), e1000385 (2009). https://doi.org/10.1371/journal.pcbi.1000385

    Article  MathSciNet  Google Scholar 

  19. Li, D.: Shortest paths through a reinforced random walk. Tech. rep., University of Uppsala (2011)

    Google Scholar 

  20. Mubayi, D., Zhao, Y.: Co-degree density of hypergraphs. J. Comb. Theory, Ser. A 114(6), 1118–1132 (2007). https://doi.org/10.1016/j.jcta.2006.11.006

    Article  MathSciNet  MATH  Google Scholar 

  21. Ouvrard, X., Goff, J.L., Marchand-Maillet, S.: Adjacency and tensor representation in general hypergraphs part 1: e-adjacency tensor uniformisation using homogeneous polynomials. CoRR abs/1712.08189 (2017). http://arxiv.org/abs/1712.08189

  22. Ribeiro, B.F., Basu, P., Towsley, D.: Multiple random walks to uncover short paths in power law networks. In: 2012 Proceedings IEEE INFOCOM Workshops, Orlando, FL, USA, 25-30 March 2012, pp. 250–255 (2012). https://doi.org/10.1109/INFCOMW.2012.6193500

  23. Voorhees, E.M.: The efficiency of inverted index and cluster searches. In: SIGIR 1986, Proceedings of the 9th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Italy, 8-10 September 1986, pp. 164–174 (1986). https://doi.org/10.1145/253168.253203

  24. Yu, W., Sun, N.: Establishment and analysis of the supernetwork model for nanjing metro transportation system. Complexity 2018, 4860531:1–4860531:11 (2018). https://doi.org/10.1155/2018/4860531

    Article  Google Scholar 

  25. Zobel, J., Moffat, A., Ramamohanarao, K.: Inverted files versus signature files for text indexing. ACM Trans. Database Syst. 23(4), 453–490 (1998). https://doi.org/10.1145/296854.277632

    Article  Google Scholar 

Download references

Acknowledgements

José Devezas is supported by research grant PD/BD/128160/2016, provided by the Portuguese national funding agency for science, research and technology, Fundação para a Ciência e a Tecnologia (FCT), within the scope of Operational Program Human Capital (POCH), supported by the European Social Fund and by national funds from MCTES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Devezas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Devezas, J., Nunes, S. (2020). Characterizing the Hypergraph-of-Entity Representation Model. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_1

Download citation

Publish with us

Policies and ethics