Skip to main content

Systematization of Knowledge on Scalability Aspect of Blockchain Systems

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1129))

Included in the following conference series:

Abstract

Blockchains has redefined the way software industry’s core mechanisms operate. Advent of blockchains have intrigued the industry and research community by the properties like immutability, reliability and availability it adheres. Since then, community has observed extensive research to make this technology viable and replace the existing computing paradigms. Blockchain technology promises global, immutable, self-governed system of records with no intermediaries. Technology with such properties have strong use cases where a secure audit trail is quintessential. But the performance of blockchains is not at par with the existing industry standards making industry reluctant to surge towards the blockchains. This paper presents a comprehensive analysis on the recent approaches used to enhance the performance of blockchain systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy, C., Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A., Stathakopoulou, C., Vukolić, M., Cocco, S.W., Yellick, J.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp. 30:1–30:15. ACM, New York (2018)

    Google Scholar 

  2. Berger, C., Reiser, H.P.: Scaling Byzantine consensus: a broad analysis. In: Proceedings of the 2nd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers, pp. 13–18. ACM, New York (2018)

    Google Scholar 

  3. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the public parameters of the Pinocchio zk-SNARK. In: Zohar, A., et al. (eds.) Financial Cryptography and Data Security. FC 2018. LNCS, vol. 10958. Springer, Heidelberg (2019)

    Google Scholar 

  4. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 20, 398–461 (2002). https://doi.org/10.1145/571637.571640

    Article  Google Scholar 

  5. Dannen, C.: Introducing Ethereum and Solidity: Foundations of Cryptocurrency and Blockchain Programming for Beginners. Apress, Berkeley (2017)

    Book  Google Scholar 

  6. Distler, T., Cachin, C., Kapitza, R.: Resource-efficient Byzantine fault tolerance. IEEE Trans. Comput. 65, 2807–2819 (2016). https://doi.org/10.1109/TC.2015.2495213

    Article  MathSciNet  MATH  Google Scholar 

  7. Eberhardt, J., Heiss, J.: Off-chaining models and approaches to off-chain computations. In: Proceedings of the 2nd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers, pp. 7–12. ACM, New York (2018)

    Google Scholar 

  8. Eberhardt, J., Tai, S.: On or Off the blockchain? Insights on off-chaining computation and data. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) Service-Oriented and Cloud Computing, pp. 3–15. Springer (2017)

    Google Scholar 

  9. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 51–68. ACM, New York (2017)

    Google Scholar 

  10. Goldreich, O., Micali, S., Wigderson, A.: Proofs That yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38, 690–728 (1991). https://doi.org/10.1145/116825.116852

    Article  MathSciNet  MATH  Google Scholar 

  11. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification. Technical report 2016–1.10. Zerocoin Electric Coin Company (2016)

    Google Scholar 

  12. Kapitza, R., Behl, J., Cachin, C., Distler, T., Kuhnle, S., Mohammadi, S.V., Schröder-Preikschat, W., Stengel, K.: CheapBFT: resource-efficient byzantine fault tolerance. In: Proceedings of the 7th ACM European Conference on Computer Systems, pp. 295–308. ACM, New York (2012)

    Google Scholar 

  13. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative Byzantine fault tolerance. In: Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles, pp. 45–58. ACM, New York (2007)

    Google Scholar 

  14. Li, P., Wang, G., Chen, X., Xu, W.: Gosig: scalable byzantine consensus on adversarial wide area network for blockchains. arXiv:1802.01315 (2018)

  15. Li, W., Sforzin, A., Fedorov, S., Karame, G.O.: Towards scalable and private industrial blockchains. In: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts, pp. 9–14. ACM, New York (2017)

    Google Scholar 

  16. Liu, J., Li, W., Karame, G.O., Asokan, N.: Scalable Byzantine consensus via hardware-assisted secret sharing. IEEE Trans. Comput. 68, 139–151 (2019). https://doi.org/10.1109/TC.2018.2860009

    Article  MathSciNet  MATH  Google Scholar 

  17. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pp. 120–130. IEEE Comput. Soc., New York (1999)

    Google Scholar 

  18. Nakamoto, S.: Bitcoin A Peer-to-Peer Electronic Cash System (2008)

    Google Scholar 

  19. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4, 161–174 (1991). https://doi.org/10.1007/BF00196725

    Article  MATH  Google Scholar 

  20. Syta, E., Tamas, I., Visher, D., Wolinsky, D.I., Jovanovic, P., Gasser, L., Gailly, N., Khoffi, I., Ford, B.: Keeping authorities “honest or bust” with decentralized witness cosigning. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 526–545 (2016)

    Google Scholar 

  21. Yang, Y.: LinBFT: linear-communication byzantine fault tolerance for public blockchains (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parth Anand Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shukla, P.A., Samet, S. (2020). Systematization of Knowledge on Scalability Aspect of Blockchain Systems. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Advances in Information and Communication. FICC 2020. Advances in Intelligent Systems and Computing, vol 1129. Springer, Cham. https://doi.org/10.1007/978-3-030-39445-5_11

Download citation

Publish with us

Policies and ethics