Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1081))

  • 262 Accesses

Abstract

This paper presents a novel approach for describing the functioning of an active elbow orthosis with the use of generalized nets modeling. The so proposed model will permit the development of user-oriented control of sEMG- powered elbow orthosis. We propose an abstract model based on the “on-off” myoelectric control, appropriate for maximum two degrees of freedom in the elbow joint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atanassov, K.: Generalized Nets. World Scientific, Singapore (1991)

    Book  Google Scholar 

  2. Atanassov, K.: On Generalized Nets Theory. Prof. M. Drinov Academic Publishing House, Sofia (2007)

    MATH  Google Scholar 

  3. Atanassov, K.: (1998) Generalized Nets in Artificial Intelligence. Volume 1: Generalized Nets and Expert Systems. Prof. M. Drinov Academic Publishing House, Sofia (1998)

    MATH  Google Scholar 

  4. Atanassov, K.: Generalized nets as a tool for the modelling of data mining processes. In: Sgurev, V., Yager, R., Kacprzyk, J., Jotsov, V. (eds.) Innovative Issues in Intelligent Systems, pp. 161–215. Springer, Cham (2016)

    Chapter  Google Scholar 

  5. Bunch, W.: Atlas of Orthotics: Biomechanical Principles and Application. Mosby, St. Louis (1985)

    Google Scholar 

  6. Kiguchi, K., Hayashi, Y.: An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Trans Syst. Man Cybern. Part B Cybern. 42, 1064–1071 (2012)

    Article  Google Scholar 

  7. Lehneis, H.R.: Upper-limb orthotics. Orthot. Prosthet. 31(4), 14–20 (1977)

    Google Scholar 

  8. Lenzi, T., de Rossi, S.M.M., Vitiello, N., Carrozza, M.C.: Intention-based EMG control for powered exoskeletons. IEEE Trans. Biomed. Eng. 59, 2180–2190 (2012)

    Article  Google Scholar 

  9. Pylatiuk, C., Kargov, A., Gaiser, I., Werner, T., Schulz, S., Bretthauer, G.: Design of a flexible fluidic actuation system for a hybrid elbow orthosis. In: 2009 IEEE 11th International Conference on Rehabilitation Robotics Kyoto International Conference Center, Japan, 23–26 June 2009 (2009)

    Google Scholar 

  10. Lunsford, T.R., Wallace, J.M.: The orthotic prescription. In: Goldberg, B., Hsu, J.D. (eds.) Atlas of Orthotic and Assistive Devices—Biomechanical Principles and Applications, 3rd edn. Mosby, St. Louis (1995)

    Google Scholar 

  11. Minchev, Z.: Generalized nets model for control of mobile robot. In: Proceedings of International Symposium “Bioprocess Systems 2004–BioPS 2004”, Sofia, Bulgaria, 6–8 December 2004, III.42–III.45 (2004)

    Google Scholar 

  12. Ribagin, S., Zaharieva, B., Radeva, I., Pencheva, T.: Generalized net model of proximal humeral fractures diagnosing. Int. J. Bioautom. 22(1), 11–20 (2018)

    Article  Google Scholar 

  13. Ribagin, S., Sotirova, E., Pencheva, T.: Generalized net model of adhesive capsulitis diagnosing. In: Lirkov, I., Margenov, S. (eds.) Large-Scale Scientific Computing. Lecture Notes in Computer Science, vol. 10665, pp. 408–415. Springer, Cham (2018)

    Chapter  Google Scholar 

  14. Ribagin, S., Pencheva, T., Shannon, T.: Generalized net model of surface EMG data processing for control of active elbow orthosis device. In: ANNA 2018; Advances in Neural Networks and Applications 2018, 15–17 September 2018, pp. 1–4 (2018)

    Google Scholar 

  15. Ribagin, S., Atanassov, K.: Generalized net model for user-oriented control of an active elbow orthosis device. In: XXVII ISCTC ADP 2018, Sozopol, Bulgaria, pp. 228–232 (2018). ISSN – 1310-3946

    Google Scholar 

  16. Roeva, O., Pencheva, T., Shannon, A., Atanassov, K.: Generalized Nets and Genetic Algorithms. Generalized Nets in Artificial Intelligence Series, vol. 7. Prof. Marin Drinov Academic Publishing House, Sofia (2013)

    Google Scholar 

  17. Shannon, A., Sorsich, J., Atanassov, K.: Generalized Nets in Medicine. Prof. Marin Drinov Academic Publishing House, Sofia (1996)

    Google Scholar 

  18. Su, H., Li, Z., Li, G., Yang, C.: EMG-based neural network control of an upper-limb power-assist exoskeleton robot. In: Guo, C., Hou, Z.G., Zeng, Z. (eds.) Advances in Neural Networks–ISNN, pp. 204–211. Springer, Heidelberg (2013)

    Google Scholar 

  19. https://www.sparkfun.com/products/13723. Accessed 23 July 2018

Download references

Acknowledgements

Work presented here is partially supported by the Project № DFNP-17-140/01.08.2017 of the Program for Career Development of Young Scientists, BAS

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Ribagin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ribagin, S., Vassilev, P., Zoteva, D. (2021). Generalized Net Model of an Active Elbow Orthosis Prototype. In: Atanassov, K., et al. Uncertainty and Imprecision in Decision Making and Decision Support: New Challenges, Solutions and Perspectives. IWIFSGN 2018. Advances in Intelligent Systems and Computing, vol 1081. Springer, Cham. https://doi.org/10.1007/978-3-030-47024-1_18

Download citation

Publish with us

Policies and ethics