Skip to main content

Using Mobile Sensing on Smartphones for the Management of Daily Life Tasks

  • Chapter
  • First Online:
New Trends in Business Information Systems and Technology

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 294))

  • 2792 Accesses

Abstract

Today, all smartphones contain a variety of embedded sensors capable of monitoring and measuring relevant physical qualities and quantities, such as light or noise intensity, rotation and acceleration, magnetic field, humidity, etc. Combining data from these different sensors and deriving new practical information is the way to enhance the capabilities of such sensors, known as sensor fusion or multimodal sensing. However, the authors hypothesize that the sensing technology that is embedded in smartphones may also support daily life task management. Because one of the biggest challenges in mobile sensing on smartphones is the lack of appropriate unified data analysis models and common software toolkits, the authors have developed a prototype for a mobile sensing architecture, called Sensing Things Done (STD). With this prototype, by applying multimodal sensing and gathering sensor data from performing a specific set of tasks, the authors were able to conduct a feasibility study to investigate the hypothesis set above. Having examined to what extent the task-related activities could be detected automatically by using sensors of a standard smartphone, the authors of this chapter describe the conducted study and provide derived recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baesens, B.: Analytics in a Big Data World: The Essential Guide to Data Science and Its Applications (Wiley and SAS Business Series). Wiley, Hoboken, New Jersey (2014)

    Google Scholar 

  2. Time.com: First smartphone IBM Simon. http://time.com/3137005/first-smartphone-ibm-simon/

  3. Menon, D.: Analysis of Smartphone-Ambient Data to Manage Daily Life Tasks. Unpublished Master Thesis, Olten (2016)

    Google Scholar 

  4. Lee, U., Han, K., Cho, H., Chung, K.-M., Hong, H., Lee, S.-J., Noh, Y., Park, S., Carroll, J.M.: Intelligent positive computing with mobile, wearable, and IoT devices: literature review and research directions. Ad Hoc Netw. 83, 8–24 (2019). https://doi.org/10.1016/J.ADHOC.2018.08.021

    Article  Google Scholar 

  5. Laport-López, F., Serrano, E., Bajo, J., Campbell, A.T.: A review of mobile sensing systems, applications, and opportunities. Knowl. Inf. Syst. 1–30 (2019). https://doi.org/10.1007/s10115-019-01346-1

  6. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010)

    Article  Google Scholar 

  7. Ayub, S., Bahraminasab, A., Honary, B.: A sensor fusion method for smart phone orientation estimation. In: 13th Annual Post Graduate Symposium on the Convergence of Telecommunications, Networking and Broadcasting. Liverpool (2012)

    Google Scholar 

  8. Google: Android Sensor Overview. http://developer.android.com/guide/topics/sensors/sensors_overview.html

  9. Allan, A.: Basic Sensors in IOS: Programming the Accelerometer, Gyroscope, and More. O’Reilly Media Inc, Sebastopol, California (2011)

    Google Scholar 

  10. Liu, G., Iwai, M., Tobe, Y., Matekenya, D., Hossain, K.M.A., Ito, M., Sezaki, K.: Beyond horizontal location context: measuring elevation using smartphone’s barometer. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, pp. 459–468 (2014)

    Google Scholar 

  11. Khan, W.Z., Xiang, Y., Aalsalem, M.Y., Arshad, Q.: Mobile phone sensing systems: a survey. IEEE Commun. Surv. Tutor. 15(1), 402–427 (2013)

    Article  Google Scholar 

  12. Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev, D., Campbell, A.T.: StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 3–14 (2014)

    Google Scholar 

  13. Priyantha, B., Lymberopoulos, D., Liu, J.: Enabling energy efficient continuous sensing on mobile phones with littlerock. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 420–421 (2010)

    Google Scholar 

  14. Rowley, J.: The wisdom hierarchy: representations of the DIKW hierarchy. J. Inf. Sci. 33(2), 163–180 (2007)

    Article  Google Scholar 

  15. Chen, H., Chiang, R.H.L., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Q. 36(4), 1165–1188 (2012)

    Article  Google Scholar 

  16. Predić, B., Yan, Z., Eberle, J., Stojanovic, D., Aberer, K.: ExposureSense: integrating daily activities with air quality using mobile participatory sensing. In: 2013 IEEE international conference on pervasive computing and communications workshops (PERCOM workshops), pp. 303–305 (2013)

    Google Scholar 

  17. Rana, R.K., Chou, C.T., Kanhere, S.S., Bulusu, N., Hu, W.: Ear-phone: an end-to-end participatory urban noise mapping system. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 105–116 (2010)

    Google Scholar 

  18. Allen, D.: Getting Things Done: The Art of Stress-Free Productivity. Penguin, New York (2015)

    Google Scholar 

  19. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. CSUR. 46(3), Article No. 33 (2014)

    Google Scholar 

  20. Habitica V3 API Documentation. https://habitica.com/apidoc/

  21. SensingKit. A multi-platform mobile sensing framework. https://www.sensingkit.org/

  22. Google LLC: Google Play services—Apps on Google Play. https://play.google.com/store/apps/details?id=com.google.android.gms&hl=en_US

  23. Weka 3—data mining with open source machine learning software in Java. https://www.cs.waikato.ac.nz/ml/weka/

  24. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2016)

    Google Scholar 

  25. Stikic, M., Larlus, D., Ebert, S., Schiele, B.: Weakly supervised recognition of daily life activities with wearable sensors. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2521–2537 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safak Korkut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Menon, D., Korkut, S., Inglese, T., Dornberger, R. (2021). Using Mobile Sensing on Smartphones for the Management of Daily Life Tasks. In: Dornberger, R. (eds) New Trends in Business Information Systems and Technology. Studies in Systems, Decision and Control, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-030-48332-6_5

Download citation

Publish with us

Policies and ethics