Skip to main content

Model to Estimate Concrete Carbonation Depth and Service Life Prediction

  • Chapter
  • First Online:
Hygrothermal Behaviour and Building Pathologies

Part of the book series: Building Pathology and Rehabilitation ((BUILDING,volume 14))

Abstract

This chapter proposes a mathematical model for estimating the concrete carbonation depth and predicting the service life of concrete structures subject to CO2 action, with easily obtainable input data. The input variables are divided into three groups: concrete properties (concrete compressive strength at 28 days, type of cement used, content and type mineral admixture); exposure conditions (a structure is indoors or outdoors, protected or not from rain) and environmental conditions (relative humidity and CO2 content). The model was obtained by coupling the concrete conduct equations reported in the literature, especially the first Fick’s Law. To adjust the model’s coefficients and parameters, 1298 data obtained through experts’ knowledge were used. The model determination coefficient was 0.9860, and the root-mean-square error (RMSE) was 0.3 mm. The model was validated using 298 data of the natural carbonation available in the literature, representing 87% of tested data. The results indicate that the model has the potential to predict the concrete carbonation depth for the boundary conditions that guided its development. It also presents itself as a potential tool for determining the concrete carbonation depth and service life prediction of new or existing structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams DA (1927) Water-cement ratio as a basis of concrete quality. J Am Concr Inst 452–457

    Google Scholar 

  • Andrade, C (2016) Future trends in research on reinforcement corrosion. In: Corrosion of Steel in Concrete Structures, pp 269–288. https://doi.org/10.1016/b978-1-78242-381-2.00014-6

  • Andrade JJO, Possan E, Dal Molin DCC (2017) Considerations about the service life prediction of reinforced concrete structures inserted in chloride environments. J Building Pathol Rehabil 2:1–8. https://doi.org/10.1007/s41024-017-0025-x

    Article  Google Scholar 

  • Bakker RFM (1988) Initiation period. In: Corrosion of steel in concrete. London: Chapman & Hall

    Google Scholar 

  • Bust AG, Gibb F, Haslam RA (2005) Manual handling of highway kerbs: focus group findings. Appl Ergonom 36:417–425. https://doi.org/10.1016/j.apergo.2004.05.005

  • Ceukelaire L, Nieuwenburg V (1993) Accelerated carbonation of a blast-furnace cement concrete. Cement Concr Res 442–452

    Google Scholar 

  • Chen Y, Liu P, Yu Z (2018) Effects of environmental factors on concrete carbonation depth and compressive strength. Materials 11:2167. https://doi.org/10.3390/ma11112167

    Article  Google Scholar 

  • Cui H, Tang W, Liu W, Dong Z, Feng X (2015) Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms. Constr Build Mater 522–527. https://doi.org/10.1016/j.conbuildmat.2015.06.007

  • Dal Molin DCC (2018) Contributions for the improvement of the technical standard for performance evaluation of residential building NBR 15575. Research Report. Research Report. INOVATEC—FINEP Network. Public Call MCT/MCidades/FINEP/transversal action environmental sanitation and housing—07/2009. Agreement 01.11.0142.00 (Portuguese)

    Google Scholar 

  • Dyer T (2014) Concrete durability. CRC Press, Taylor & Francis Group

    Google Scholar 

  • Ekolu SO (2016) A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete. Constr Build Mater 127:306–320. https://doi.org/10.1016/j.conbuildmat.2016.09.056

    Article  Google Scholar 

  • Ekolu SO (2018) Model for practical prediction of natural carbonation in reinforced concrete: Part 1-formulation. Cement Concr Compos 86:40–56

    Article  Google Scholar 

  • Felix EF, Possan E (2018) Balance emissions and CO2 uptake in concrete structures: simulation based on the cement content and type. Revista ibracon de estruturas e materiais. 11:135–162. http://dx.doi.org/10.1590/S1983-41952018000100008

  • Ferreira MB (2013) Study of natural carbonation of concrete with different mineral admixture after 10 years of exposure. Dissertação, Pós-Graduação em Geotecnia, Estruturas e Construção Civil, Universidade Federal de Goiás, Goiânia, Goiás, 197p (in Portuguese)

    Google Scholar 

  • Fib Bulletin 34. Model Code for Service Life Design. Lausanne: Fédération Internationale du Béton, 2006

    Google Scholar 

  • Fib Bulletin 53 (2010) Model code for structural concrete textbook on behavior, design and performance, 2, vol 3, Design of durable concrete structures. Fédération Internationale du Béton

    Google Scholar 

  • Figueiredo CR (2004) Study of carbonation in reinforced concrete structures in Brasília: evaluation of pillars. Tese (Doutorado em Engenharia)—Departamento de Engenharia Civil, Universidade de Brasília, Brasília, DF, p. 222f (in Portuguese)

    Google Scholar 

  • François R, Laurens S, Deby F (2018) Predicting the service life of structures. In: Corrosion and its consequences for reinforced concrete structures, pp 175–191. https://doi.org/10.1016/b978-1-78548-234-2.50007-x

  • García-Alonso MC et al (2007) Corrosion behavior of new stainless steels reinforcing bars embedded in concrete. Cement Concr Res 1463–147. https://doi.org/10.1016/j.cemconres.2007.06.003

  • Hamada M (1969) Neutralization (carbonation) of concrete and corrosion of reinforcing steel. In: 5th International symposium on the chemistry of cement, Tokyo, pp 343–369

    Google Scholar 

  • Hills TP, Gordon F, Florin NH, Fennell PS (2015) Statistical analysis of the carbonation rate of concrete. Cement Concr Res 98–107. http://dx.doi.org/10.1016/j.cemconres.2015.02.007

  • Ho DWS, Lewis RK (1987) Carbonation of concrete and its prediction. Cement Concr Res 489–504. https://doi.org/10.1016/0008-8846(87)90012-3

  • Houst YF, Wittmann FH (2002) Depth profiles of carbonates formed during natural carbonation. Cement Concr Res 12:1923–1930. https://doi.org/10.1016/s0008-8846(02)00908-0

  • Hyvert N (2009) Application de l’approche probabiliste à la durabilité des produits préfabriqués en béton. Université Paul Sabatier, Toulouse. Thèse de doctorat

    Google Scholar 

  • Idorn GM (2005) Innovation in concrete research: review and perspective. Cement Concr Res 3–10. https://doi.org/10.1016/j.cemconres.2004.09.006

  • IPCC (2006) Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change. http://www.ipcc.ch

  • Isaia GS (2007) Accelerated and natural carbonation of concrete with a high content of pozzolans. Res Rep (in Portuguese)

    Google Scholar 

  • Ishida T, Maekawa K (2001) Modeling of pH profile in pore water based on mass transport and chemical equilibrium theory. JSCE 131–146

    Google Scholar 

  • ISO 13823 (2008) General principles on the design of structures for durability. International Organization for Standardization, Geneva. ISO/TC

    Google Scholar 

  • ISO 16204 (2012) Durability—service life design of concrete structures. International Organization for Standardization, Geneva

    Google Scholar 

  • Jiang JL, Lin B, Cai Y (2000) A model for predicting carbonation of high-volume fly ash concrete. Cement Concr Res 699–702. http://dx.doi.org/10.1016/S0008-8846(00)00227-1

  • Kulakowski MP, Pereira FM, Dal Molin DCC (2009) Carbonation-induced reinforcement corrosion in silica fume concrete. Constr Build Mater 1189–1195. http://dx.doi.org/10.1016/j.conbuildmat.2008.08.005

  • Kwon SJ, Song HW (2010) Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling. Cement Concr Res 119–127. https://doi.org/10.1016/j.cemconres.2009.08.022

  • Marchand J, Samsonb E (2009) Predicting the service-life of concrete structures: limitations of simplified models. Cement Concr Compos 8:515–521. https://doi.org/10.1016/j.cemconcomp.2009.01.007

    Article  Google Scholar 

  • Mehta PK (1994) Concrete technology at the crossroads: problems and opportunities. In: Concrete technology: past, present and future, São Paulo

    Google Scholar 

  • Mehta PK, Monteiro PJM (2014) Concrete: microstructure, properties, and materials, Fourth edn. McGraw-Hill

    Google Scholar 

  • Meira GR (2004) Agressividade por cloretos em zona de atmosfera marinha frente ao problema da corrosão em estruturas de concreto armado. tese (doutorado em Engenharia Civil) Universidade Federal de Santa Catarina, Florianópolis, 2004, 346p

    Google Scholar 

  • Monteiro IF, Branco A, Brito JR, Neves R (2012) Statistical analysis of the carbonation coefficient in open air concrete structures. Constr Build Mater 263–269. http://dx.doi.org/10.1016/j.conbuildmat.2011.10.028

  • Morgan DL (1997) Focus groups as qualitative research. Qualitative Research Methods Series, 2, vol 16. Sage Publications, London

    Google Scholar 

  • Neves R, Branco F, Brito J (2013) Field assessment of the relationship between natural and accelerated concrete carbonation resistance. Cement Concr Compos 9–15. http://dx.doi.org/10.1016/j.cemconcomp.2013.04.006

  • Neville AM (2012) Properties of concrete, 5. Prentice Hall

    Google Scholar 

  • NOAA (2020) National Oceanic and Atmospheric Administration. Earth System Research Laboratory. Global Monitoring Division. Trends in Atmospheric Carbon Dioxide. https://www.esrl.noaa.gov/gmd/ccgg/trends/index.html. Accessed March 2020

  • Otieno M, Ikotun J, Ballim Y (2020) Experimental investigations on the effect of concrete quality, exposure conditions and duration of initial moist curing on carbonation rate in concretes exposed to urban, inland environment. Constr Build Mater 246:118443. https://doi.org/10.1016/j.conbuildmat.2020.118443

    Article  Google Scholar 

  • Papadakis VG, Vayenas CG, Fardis MN (1991) Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater J 363–373

    Google Scholar 

  • Papadakis VG, Vayenas CG, Fardis MN (1989) Reaction engineering approach to the problem of concrete carbonation. AIChE J, 35(10):1639–1650

    Google Scholar 

  • Parrot LJ (1987) A review of carbonation in reinforced concrete. Cement and Concrete Association Report

    Google Scholar 

  • Pasupathy K, Berndt M, Castel A, Sanjayan J, Pathmanathan R (2016) Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years. Constr Build Mater 661–669.. https://doi.org/10.1016/j.conbuildmat.2016.08.078

  • Pauletti C, Possan E, Dal Molin DCC (2007) Accelerated carbonation: state of the art of research in Brazil. Ambiente Construído 4:7–20 (in Portuguese)

    Google Scholar 

  • Possan E, Andrade JJO (2014) Markov chains and reliability analysis for reinforced concrete structure service life. Mater Res 593–602. http://dx.doi.org/10.1590/S1516-14392014005000074

  • Possan E (2010) Carbonation Modeling and service life prediction of concrete structures in urban environment. Engineering School, Federal University of Rio Grande do Sul, Porto Alegre. PhD Thesis in Engineering (in Portuguese)

    Google Scholar 

  • Possan E (2004) Contribution to the study of concrete carbonation with silica fume addition in a natural and accelerated environment. Engineering School, Federal University of Rio Grande do Sul, Porto Alegre. Dissertation in Engineering (in Portuguese)

    Google Scholar 

  • Possan E, Thomaz WA, Aleandri GA, Felix EF, e Dos Santos ACP (2017) CO2 uptake potential due to concrete carbonation: a case study. Case Stud Constr Mater. http://dx.doi.org/10.1016/j.cscm.2017.01.007

  • Possan E, Andrade JJO, Dal Molin DCC (2018) A conceptual framework for service life prediction of reinforced concrete structures. J Build Pathol Rehabil 3:1–11. https://doi.org/10.1007/s41024-018-0031-7

    Article  Google Scholar 

  • Rigo E, Oliveira CE, Possan E (2018) The reinforced concrete structures service life predictability: an analysis from the perspective of depth of carbonation. Revista técnico científica do CREA-PR, pp 1–18 (Portuguese)

    Google Scholar 

  • Rilem - Reunion Internationale de Laboratoires D’essais et Materiaux (1988) CPC-18: Measurement of hardened concrete carbonation depth. Materials and Structures, RILEM Recommendations CPC-18

    Google Scholar 

  • Rilem TC (2015) 230-PSC. Performance-Based Specifications and Control of Concrete Durability. State-of-the-Art Report. Hans, Fernandez Luco, Luis Beushausen, Edição, vol 18. Springer

    Google Scholar 

  • Rougeau P (1997) Les résultats d’essais croises AFREM: Essai de carbonatation accélere. Etat des lieux et reflexions sur la carbonatation du béton armé. Laboratoire Central Des Ponts et Chaussées, Paris, pp 87–103. (in French)

    Google Scholar 

  • Saetta AV, Vitaliani RV (2004) Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures. Part I: theoretical formulation. Cement Concr Res 571–579. http://dx.doi.org/10.1016/j.cemconres.2003.09.009

  • Saetta AV, Schrefler BA, Vitaliani RV (1993) The carbonation of concrete and the mechanism of moisture, heat and carbon-dioxide flow-through porous materials. Cement Concr Res 761–772. https://doi.org/10.1016/0008-8846(93)90030-d

  • Silva A, Neves R, Brito J (2014) Statistical modeling of carbonation in reinforced concrete. Cement Concr Compos 73–81. http://dx.doi.org/10.1016/j.cemconcomp.2013.12.001

  • Singh N, Singh SP (2016) Carbonation resistance and microstructural analysis of low and high-volume fly ash self-compacting concrete containing Recycled Concrete Aggregates. Constr Build. https://doi.org/10.1016/j.conbuildmat.2016.10.067

    Article  Google Scholar 

  • Steffens A, Dinkler D, Ahrens H (2002) Modeling carbonation for corrosion risk prediction of concrete structures. Cement and Concrete Research. 32:935–941. https://doi.org/10.1016/S0008-8846(02)00728-7

  • Sun B, Xiao R, Ruan W, Wang P (2020) Corrosion-induced cracking fragility of RC bridge with improved concrete carbonation and steel reinforcement corrosion models. Eng Struct 208:110313. https://doi.org/10.1016/j.engstruct.2020.110313

    Article  Google Scholar 

  • Ta VL, Bonnet S, Kiesse TS, Ventura A (2016) A new meta-model to calculate carbonation front depth within concrete structures. Constr Build Mater 172–181. http://dx.doi.org/10.1016/j.conbuildmat.2016.10.103

  • Thiéry M (2005) Modélisation de la carbonatation atmosphérique des bétons: Prise en compte des effets cinétiques et de l’état hydrique. Ecole Nationale des Ponts et Chaussées. Thèse de doctorat, Paris

    Google Scholar 

  • Tuutti K (1982) Corrosion of Steel in Concrete. Swedish Cement and Concrete Research Institute. Stockholm, Suecis

    Google Scholar 

  • Yoon I-S, Çopuroğlu O, Park K-B (2007) Effect of global climatic change on carbonation progress of concrete. Atmos Environ 34:7274–7285

    Google Scholar 

  • Zhao H, Sun W, Wu X et al (2018) The effect of the material factors on the concrete resistance against carbonation. KSCE J Civ Eng 22:1265–1274. https://doi.org/10.1007/s12205-017-0988-9

  • Zhu J, Zhang R, Zhang Y, He F (2019) The fractal characteristics of pore size distribution in cement-based materials and its effect on gas permeability. Sci Rep 9:17191. https://doi.org/10.1038/s41598-019-53828-5

Download references

Acknowledgements

We should thank the National Council for Scientific and Technological Development (CNPq) and for the support and funding of the study. We thank the focus group experts for their valuable contribution to obtaining the database: Aguida G. Abreu, Antônio A. Nepomuceno, Claudio S. Kazmierkzak, Geraldo C. Isaia, Luiz CP da Silva Filho, Manuel Fernández Cánovas, Marlova P Kulakowski and Pedro Castro Borges. Thanks to Emerson Felipe Felix, Eduardo Rigo and Cassio by contributions in reviewing and text translation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Possan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Possan, E., Andrade, J.J.O., Dal Molin, D.C.C., Ribeiro, J.L.D. (2021). Model to Estimate Concrete Carbonation Depth and Service Life Prediction. In: Delgado, J. (eds) Hygrothermal Behaviour and Building Pathologies. Building Pathology and Rehabilitation, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-50998-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50998-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50997-2

  • Online ISBN: 978-3-030-50998-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics