Skip to main content

Artificial Intelligence Applied in the Concrete Durability Study

  • Chapter
  • First Online:
Hygrothermal Behaviour and Building Pathologies

Part of the book series: Building Pathology and Rehabilitation ((BUILDING,volume 14))

Abstract

Interest in artificial intelligence (AI) in engineering research and practice has increased in recent years, especially the use of artificial neural network (ANN). The ANN has similar characteristics to biological neural networks, efficiently recognizing patterns and behaviors, suited to provide an accurate tool to map and understand the concrete degradation. This chapter presents the positive aspects of artificial neural network to model different concrete degradation mechanisms and provides a detailed procedure for ANN design. As example, the concrete carbonation depth is modeled by an ANN and the results show the its ability to map the carbonation phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abambres M, Lantosoght EOL (2019) ANN-based fatigue strength of concrete under compression. Materials 12(22):1–21

    Article  Google Scholar 

  • Abbas YM, Khan MI (2016) Influence of fiber properties on shear failure of steel fiber reinforced beams without web reinforcement: ANN modeling. Latin Am J Solids Struct 13(8):1483–1498

    Article  Google Scholar 

  • Adeli H (1994) Advances in design optimization. E. & F. N. Spon, London

    Book  Google Scholar 

  • Adeli H (2001) Neural networks in civil engineering: 1989-2000. Comput-Aided Civil Infrastruct 16(2):126–142

    Article  Google Scholar 

  • Adeli H, Yeh C (1989) Perceptron learning in engineering design. Microcomput Civil Eng 4(4):247–256

    Article  Google Scholar 

  • Aggarwal CC (2018) Neural networks and deep learning: a textbook, 1th ed. Springer, New York

    Google Scholar 

  • Akpinar P, Uwanuakwa ID (2016) Intelligent prediction of concrete carbonation depth using neural networks. Bull Transylv Univ Brasov 9(2):99–108

    MATH  Google Scholar 

  • Al-Suhaili RHS, Ali AAM, Behaya SAK (2014) Artificial neural network modeling for dynamic analysis of a DamReservoir-Foundation system. Int J Eng Res Appl 4(1):121–143

    Google Scholar 

  • Alshihri MM, Azmy MA, El-Bisy SM (2009) Neural networks for predicting compressive strength of structural light weight concrete. Constr Build Mater 23(6):2214–2219

    Article  Google Scholar 

  • Babiker AA, Adam FM, Mohamed AE (2012) Design optimization of reinforced concrete beams using artificial neural network. Int J Eng Invent 1(8):7–13

    Google Scholar 

  • Basheer IA (2000) Selection of methodology for neural network modeling of constitutive hysteresis behavior of soil. Comput-Aided Civil Infrastruct Eng 15(6):445–63

    Article  Google Scholar 

  • Berthold T, Milbradt P, Berkhahn V (2010) Determination of network topology for ANN-bathymetric models. In: Proceedings of ninth international conference on hydro-science and engineering (ICHE 2010), IIT Madras, Chennai, India, pp 1–12

    Google Scholar 

  • Braga AP, Ludermir TB, Carvalho AC (2000) Redes Neurais Artificiais: Teoria e Aplicações. LTC—Livros Técnicos e científicos Editora, Rio de Janeiro

    Google Scholar 

  • Cai J, Cottis RA, Lyon SB (1999) Phenomenological modelling of atmospheric corrosion using an artificial neural network. Corros Sci 41(10):2001–2030

    Article  Google Scholar 

  • Chao L, Skibniewski MJ (1994) Estimating Construction productivity: neural network-based approach. J Comput Civil Eng 8(2):234–251

    Article  Google Scholar 

  • Chen HM, Qi GZ, Yang JCS, Amini F (1995) Neural network for structural dynamic model identification. J Eng Mech 121(12):1377–1381

    Google Scholar 

  • Dal Molin DCC, Masuero AB, Andrade JJO, Possan E, Masuero JR, Mennucci MM (2016) Contribuição à previsão da vida útil de estruturas de concreto. In: de Souza Kazmierczak C, Minto Fabrício M (eds) Avaliação De Desempenho De Tecnologias Construtivas Inovadoras: Materiais e Sustentabilidade, Editora Scienza, pp 223–270

    Google Scholar 

  • Dayanand TA, Shanmugaoriya S (2016) ANN model for estimation of construction labour productivity. Int J Modern Trends Eng Sci 3(8):231–238

    Google Scholar 

  • Deepak M, Gopalan R, Akshay Raj R, Shanmugi S, Usha P (2019) Modeling of concrete slump and compressive strength using ANN. Int J Innov Technol Explor Eng 8(5)

    Google Scholar 

  • Diab AM, Elyamany HE, Abd Elmoaty AEM, Shalan AH (2014) Prediction of concrete compressive strength due to long term sulfate attack using neural network. Alex Eng J 53(3):627–642

    Article  Google Scholar 

  • Duan ZH, Kou SC, Poon CS (2013) Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete. Constr Build Mater 44:524–532

    Article  Google Scholar 

  • Duan Z, Poon CS, Xiao J (2017) Using artificial neural networks to assess the applicability of recycled aggregate classification by different specifications. Mater Struct 50:1–14

    Article  Google Scholar 

  • Fausett L (1993) Fundamentals of neural networks: architectures, algorithms and applications. Pearson

    Google Scholar 

  • Felix EF, Possan E (2018) Modeling the carbonation front of concrete structures in the marine environment through ANN. IEEE Latin Am Trans 16(6):1772–1779

    Article  Google Scholar 

  • Felix EF, Possan E, Carrazedo R (2019) Analysis of training parameters in the ANN learning process to mapping the concrete carbonation depth. J Build Pathol Rehabil 4(16):1–13

    Google Scholar 

  • Gholampour A, Gandomi AH, Ozbakkaloglu T (2017) New formulations for mechanical properties of recycled aggregate concrete using gene expression programming. Constr Build Mater 130:122–145

    Article  Google Scholar 

  • Goh ATC (1995) Neural networks for evaluating CPT calibration chamber test data. Microcomput Civil Eng 10(2):147–51

    Article  Google Scholar 

  • Gu XL, Zhang WP, Shang DF (2010) Flexural behavior of corroded reinforced concrete beams. In: Song GB, Malla RB (eds) Earth and space, 2010: engineering, science, construction and operations in challenging environments, pp 3545–3552

    Google Scholar 

  • Hajela P, Berke L (1991) Neurobiological computational models in structural analysis and design. Comput Struct 41(4):657–67

    Article  MATH  Google Scholar 

  • Haykin S (2008) Neural networks: a comprehensive foundation, 2th ed. Practice-Hall, New Delhi

    Google Scholar 

  • Hamzehie ME, Mazinani S, Davardoost F, Mokhtare A, Najibi H, Van der Bruggen B, Darvishmanesh S (2014) Developing a feed forward multilayer neural network model for prediction of CO2 solubility in blended aqueous amine solutions. J Nat Gas Sci Eng 21:19–25

    Article  Google Scholar 

  • Hertzmann A, Fleet D (2012) Machine learning and data, Lecture Notes CSC 411/D11, Computer Science Department, University of Toronto, Canada

    Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79(8):2554–2558

    Article  MathSciNet  MATH  Google Scholar 

  • International Organization for Standardization (2004) Buildings and constructed assets. ISO15686-6: Service Life Planning. Procedures for considering environmental impacts. ISO, Geneva

    Google Scholar 

  • Ishida T, Maekawa K (2001) Modeling of pH profile in pore water based on mass transport and chemical equilibrium theory. Concr Libr JSCE 37:151–166

    Google Scholar 

  • Izumi I, Kita D, Maeda H (1986) Carbonation, kibodang publication, p 35–88

    Google Scholar 

  • Jain A, Jha SK, Misra S (2006) Modeling the compressive strength of concrete using Artificial Neural Networks. Cem Concr Res 36(7):1399–1408

    Google Scholar 

  • Javadi AA, Tan TP, Zhang M (2003) Neural network for constitutive modelling in finite element analysis. Compu Assist Mech Eng Sci 10(4):375–381

    Google Scholar 

  • Javadi AA, Tan TP, Elkassas ASI (2005) Intelligent finite element method. Proceeding of the 3rd MIT conference on computational fluid and solid mechanics, Cambridge, Massachusetts, USA, pp 347–350

    Google Scholar 

  • Jenkins WM (1999) A neural network for structural re-analysis. Comput Struct 72:687–98

    Article  MATH  Google Scholar 

  • Ji T, Lin T, Lin X (2006) A concrete mix proportion design algorithm based on artificial neural networks. Cem Concr Res 36(7):1399–1408

    Article  Google Scholar 

  • Kang HT, Yoon CJ (1994) Neural network approaches to aid simple truss design problems. Microcomput Civil Eng 9(3):211–18

    Article  Google Scholar 

  • Karakoç MB, Demirboga R, Türkmen I, Can I (2011) Modeling with ANN and effect of pumice aggregate and air entrainment on the freeze–thaw durabilities of HSC. Constr Build Mater 25(11):4241–4249

    Article  Google Scholar 

  • Kari OP, Puttonen J, Skantz E (2014) Reactive transport modelling of long-term carbonation. Cem Concr Compos. 52:42–53

    Google Scholar 

  • Kim DK (2009) Neuro-control of fixed offshore structures under earthquake. Eng Struct 31:517–522

    Article  Google Scholar 

  • Kobayashi K, Uno Y (1990) Mechanism of carbonation of concrete. Concr Libr JSCE 16:139–151

    Google Scholar 

  • Konzen PHA, Felix EFF (2011) Project-yapy—Pacote computacional de RNA’s orientado-a-objetos C++. Disponível em: https://code.google.com/archive/p/project-yapy

  • Kushida M, Miyamoto A, Kinoshita K (1997) Development of concrete bridge rating prototype expert system with machine learning. J Comput Civil Eng (ASCE) 11(4):238–47

    Article  Google Scholar 

  • Kwon SJ, Song HW (2010) Mechanism of carbonation behavior in concrete using neural network algorithm and carbonation modeling. Cem Concr Res 40:119–127

    Article  Google Scholar 

  • Lazarevska M, Knezevic M, Cvetkovska M (2014) Application of artificial neural network in civil engineering. J Tehnicki Vjesnik 21(6):126–142

    Google Scholar 

  • Li H, Shen LY, Love PDE (1999) ANN-based mark-up estimation system with self-explanatory capacities. J Constr Eng Manag 125(3):185–189

    Article  Google Scholar 

  • Liu W, Cui H, Dong Z, Xing F, Zhang H, Lo TY (2016) Carbonation of concrete made with dredged marine and sand and its effect on chloride binding. Constr Build Mater 120:1–9

    Article  Google Scholar 

  • Lu C, Liu R (2009) Predicting carbonation depth of prestressed concrete under different stress states using artificial neural network. Adv Artif Neural Syst 2009:1–8

    Article  Google Scholar 

  • Maekawa K, Ishida T, Kishi T (2003) Multi-scale modeling of concrete performance. J Adv Concr Technol 1:1–126

    Article  Google Scholar 

  • Martins AR, Monticelli I, Camarini G (2001) Carbonatação em concretos submetidos a diferentes procedimentos de cura. In: Congresso Brasileiro do Cimento, 43º, Foz do Iguaçu, 2001. Anais. São Paulo: Instituto Brasileiro do Concreto

    Google Scholar 

  • Masri SF, Smyth AW, Chassiakos AG, Caughey TK, Hunter NF (2000) Application of neural networks for detection of changes in nonlinear systems. J Eng Mech 126(7):666–676

    Google Scholar 

  • McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  MathSciNet  MATH  Google Scholar 

  • Mehta PK, Monteiro PJ (2013) Concrete: microstructure, properties and materials, 4th ed. McGraw-Hill Professional Publishing

    Google Scholar 

  • Meira GR, Padaratz IJ, Alonso MC, Andrade MC (2003) Effect of distance from sea and chloride aggressiveness in concrete structures Brazilian coastal site. Mater Constr 53:179–188

    Article  Google Scholar 

  • Meira GR, Padaratz IJ, Borba Junior JC (2006) Carbonatação natural de concretos: resultados de cerca de quatro anos de monitoramento. In: XI Encontro Nacional de Tecnologia do Ambiente Construído—ENTAC, 2006

    Google Scholar 

  • Moselhi O, Hegazy T, Fazio P (1991) Neural networks as tools in construction. J Constr Eng Manage. 117(4):606–625

    Google Scholar 

  • Muqeem S, Idrus A, Khamidi MF, Zakaria SB (2011) Development of construction labour productivity estimation model using artificial neural network. J Constr Eng Manag 16:713–726

    Google Scholar 

  • Nassr A, Javadi A (2018) Developing constitutive models from EPR-based self-learning finite element analysis. Int J Numer Anal Meth Geomech 42(3):401–417

    Article  Google Scholar 

  • Ni HG, Wang JZ (2000) Prediction of compressive strength of concrete by neural networks. Cement Concr Res 30(8):1245–1250

    Google Scholar 

  • Oztas A, Pala M, Ozbay E, Kanca E, Caglar N, Bhatti MA (2006) Predicting the compressive strength and slump of high strength concrete using neural network. Constr Build Mater 20(9):769–775

    Article  Google Scholar 

  • Papadakis VG, Vayenas CG, Fardis MN (1991) Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater J 88:363–373

    Google Scholar 

  • Papadrakakis M, Papadopoulos V, Lagaros ND (1996) Structural reliability analysis of elastic-plastic strutures using neural networks and Monte Carlo simulation. Comput Methods Appl Mech Eng 136:145–63

    Article  MATH  Google Scholar 

  • Parthiban T, Ravi R, Parthiban GT, Srinivasan S, Ramakrishnan KR, Raghavan M (2005) Neural network analysis for corrosion of steel in concrete. Corros Sci 47(7):1625–1642

    Google Scholar 

  • Possan E, Andrade JJO (2014) Markov Chains and reliability analysis for reinforced concrete structure service life. Mater Res 17(3):593–602

    Article  Google Scholar 

  • Poon CS, Kou SC, Lam L (2007) Influence of recycled aggregate on slump and bleeding of fresh concrete. Mater Struct 40:981–988

    Article  Google Scholar 

  • Rogers JL (1994) Simulating structural analysis with neural network. J Comput Civil Eng (ASCE) 8(2):252–65

    Article  MathSciNet  Google Scholar 

  • Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386–408

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representation by error propagation. In: Rumelhart DE et al (eds) Parallel distributed processing. MIT Press, Cambridge, MA, pp 318–362

    Google Scholar 

  • Shafabakhsh G, Talebsafa M, Motamedi M, Badroodi S (2015) Analytical evaluation of load movement on flexible pavement and selection of optimum neural network algorithm. KSCE J Civil Eng 19(4):709–715

    Google Scholar 

  • Silva ANR, Ramos RAR, Souza LCL, Rodrigues DS, Mendes JFG (2004) SIG: uma plataforma para introdução de técnicas emergentes no planejamento urbano, regional e de transportes: uma ferramenta 3D para análise ambiental urbana, avaliação multicritério, redes neurais artificiais. São Carlos, SP: Ed. dos Autores

    Google Scholar 

  • Smets HMG, Bogaerts WFL (1992) SCC analysis of austenitic stainless steels in chloride-bearing water by neural network techniques. Corros Sci 48(8):618–623

    Article  Google Scholar 

  • Sonmez R, Rowings JE (1998) Construction labor productivity modeling with neural networks. J Constr Eng Manag 124(6):498–504

    Article  Google Scholar 

  • Stavroulakis GE, Antes H (1998) Neural crack identification in steady state elastodynamics. Comput Methods Appl Mech Eng 165:129–146

    Article  MATH  Google Scholar 

  • Taffese WZ, Sistonen E (2013) Service life prediction of repaired structures using concrete recasting method: state-of-the-art. Proc Eng 45:1138–1144

    Article  Google Scholar 

  • Topçu İB, Saridemir M (2007) Prediction of properties of waste AAC aggregate concrete using artificial neural network. Comput Mater Sci 41:117–125

    Article  Google Scholar 

  • Topçu İB, Boga AR, Hocaoglu FO (2009) Modeling corrosion currents of reinforced concrete using ANN. Autom Constr 18(2):145–152

    Article  Google Scholar 

  • Trasatti SP, Mazza F (1996) Crevice corrosion, a neural network approach. Br Corros J 31(2):105–112

    Article  Google Scholar 

  • Ukrainczyk N, Ukrainczyk V (2008) A neural network method for analysing concrete durability. Mag Concr Res 60(7):475–486

    Article  MATH  Google Scholar 

  • Vafaei M, Adnan AB, Rahman ABA (2013) Real-time seismic damage detection of concrete shear walls using artificial neural networks. J Earthquake Eng 17(1):137–154

    Article  Google Scholar 

  • Williams TP, Gucunski N (1995) Neural networks for backcalculation of moduli from SASW tests. J Comput Civil Eng (ASCE) 9(1):1–8

    Article  Google Scholar 

  • Wu X, Ghaboussi J, Garrett JH (1992) Use of neural networks in prediction of structural damage. Comput Struct 42(4):649–59

    Article  MATH  Google Scholar 

  • Zhang L (2017) Artificial neural network model design and topology analysis for FPGA implementation of Lorenz chaotic generator. In: 2017 IEEE 30th Canadian conference on electrical and computer engineering (CCECE), Windsor, ON, pp 1–4

    Google Scholar 

  • Zhu X, Zi G, Cheng X (2016) Combined effect of carbonation and chloride ingress in concrete. Constr Build Mater 110:369–380

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the Coordination for the Improvement of Higher Education Personnel (CAPES) and the Brazilian National Council for Scientific and Technological Development (CNPq) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Felix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Felix, E.F., Possan, E., Carrazedo, R. (2021). Artificial Intelligence Applied in the Concrete Durability Study. In: Delgado, J. (eds) Hygrothermal Behaviour and Building Pathologies. Building Pathology and Rehabilitation, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-50998-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50998-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50997-2

  • Online ISBN: 978-3-030-50998-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics