Skip to main content

Fine–Kinney-Based Occupational Risk Assessment Using Interval Type-2 Fuzzy VIKOR

  • Chapter
  • First Online:

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 398))

Abstract

In this chapter, we improved Fine–Kinney occupational risk assessment approach with interval type-2 fuzzy VIKOR (IT2FVIKOR). VIKOR is a compromise multi-attribute decision-making method proposed by Opricovic (1998). Similar to other compromised solution-based approaches, it considers the solution which is closest to the ideal. In this chapter, we adapted the interval type-2 fuzzy sets (IT2FSs) into VIKOR as it reflects the uncertainty well in decision-making. IT2FVIKOR algorithm under the Fine–Kinney concept provides a useful and solid approach to the occupational health and safety risk assessment. In addition to proposing this new approach, a case study is performed in a gun and rifle barrel external surface oxidation and coloring unit of a gun factory. A validation and a sensitivity analysis is also attached to this study. Finally, the proposed approach is implemented in Python.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Belgrade: Faculty of Civil Engineering.

    Google Scholar 

  2. Gul, M., Celik, E., Aydin, N., Gumus, A. T., & Guneri, A. F. (2016). A state of the art literature review of VIKOR and its fuzzy extensions on applications. Applied Soft Computing, 46, 60–89.

    Article  Google Scholar 

  3. Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.

    Article  Google Scholar 

  4. Tzeng, G. H., Lin, C. W., & Opricovic, S. (2005). Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy, 33(11), 1373–1383.

    Article  Google Scholar 

  5. Ju, Y., & Wang, A. (2012). Extension of VIKOR method for multi-criteria group decision making problem with linguistic information. Applied Mathematical Modelling, 37, 3112–3125.

    Article  MathSciNet  Google Scholar 

  6. Vahdani, B., Hadipour, H., Sadaghiani, J. S., & Amiri, M. (2010). Extension of VIKOR method based on interval-valued fuzzy sets. The International Journal of Advanced Manufacturing Technology, 47(9–12), 1231–1239.

    Article  Google Scholar 

  7. Wan, S. P., Wang, Q. Y., & Dong, J. Y. (2013). The extended VIKOR method for multi-attribute group decision making with triangular intuitionistic fuzzy numbers. Knowledge-Based Systems, 52, 65–77.

    Article  Google Scholar 

  8. Kuo, M. S. (2011). A novel interval-valued fuzzy MCDM method for improving airlines’ service quality in Chinese cross-strait airlines. Transportation Research Part E: Logistics and Transportation Review, 47(6), 1177–1193.

    Article  Google Scholar 

  9. Chen, S. M., & Lee, L. W. (2010). Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert Systems with Applications, 37(4), 2790–2798.

    Article  Google Scholar 

  10. Celik, E., & Gumus, A. T. (2016). An outranking approach based on interval type-2 fuzzy sets to evaluate preparedness and response ability of non-governmental humanitarian relief organizations. Computers & Industrial Engineering, 101, 21–34.

    Article  Google Scholar 

  11. Celik, E. (2017). A cause and effect relationship model for location of temporary shelters in disaster operations management. International Journal of Disaster Risk Reduction, 22, 257–268.

    Article  Google Scholar 

  12. Celik, E., & Gumus, A. T. (2018). An assessment approach for non-governmental organizations in humanitarian relief logistics and an application in Turkey. Technological and Economic Development of Economy, 24(1), 1–26.

    Article  Google Scholar 

  13. Celik, E., Gul, M., Aydin, N., Gumus, A. T., & Guneri, A. F. (2015). A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets. Knowledge-Based Systems, 85, 329–341.

    Article  Google Scholar 

  14. Kuo, M. S., & Liang, G. S. (2012). A soft computing method of performance evaluation with MCDM based on interval-valued fuzzy numbers. Applied Soft Computing, 12(1), 476–485.

    Article  Google Scholar 

  15. Gul, M. (2018). Application of Pythagorean fuzzy AHP and VIKOR methods in occupational health and safety risk assessment: The case of a gun and rifle barrel external surface oxidation and colouring unit. International journal of occupational safety and ergonomics, 1–14.

    Google Scholar 

  16. Gul, M., Guven, B., & Guneri, A. F. (2018). A new Fine–Kinney-based risk assessment framework using FAHP-FVIKOR incorporation. Journal of Loss Prevention in the Process Industries, 53, 3–16.

    Article  Google Scholar 

  17. Celik, E., Aydin, N., & Gumus, A. T. (2014). A multiattribute customer satisfaction evaluation approach for rail transit network: A real case study for Istanbul, Turkey. Transport Policy, 36, 283–293.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Gul .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gul, M., Mete, S., Serin, F., Celik, E. (2021). Fine–Kinney-Based Occupational Risk Assessment Using Interval Type-2 Fuzzy VIKOR. In: Fine–Kinney-Based Fuzzy Multi-criteria Occupational Risk Assessment. Studies in Fuzziness and Soft Computing, vol 398. Springer, Cham. https://doi.org/10.1007/978-3-030-52148-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52148-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52147-9

  • Online ISBN: 978-3-030-52148-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics