Skip to main content

Hypocalcemia

  • Chapter
  • First Online:
Endocrine Conditions in Pediatrics

Abstract

Hypocalcemia in infants and adolescents can present with mild or severe symptoms involving the nervous, cardiovascular, and/or skeletal systems. The hallmark manifestation is neuromuscular excitability with tetany, muscle spasm, and/or seizure, though mild hypocalcemia may be asymptomatic. The causes of hypocalcemia may be transient or permanent, and include genetic, autoimmune, nutritional, acquired, and iatrogenic etiologies. A focused history, thorough physical examination, and key laboratory studies are essential steps in the diagnostic pathways and help direct further evaluation and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Autosomal dominant

ADH:

Autosomal dominant hypocalcemia

AHO:

Albright’s hereditary osteodystrophy

AIRE:

Autoimmune regulator

APECED:

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome

AR:

Autosomal recessive

cAMP:

Cyclic adenosine monophosphate

CaSR:

Calcium-sensing receptor

CHD7:

Chromodomain helicase DNAbinding 7

EEG:

Electroencephalogram

EKG:

Electrocardiogram

FGF23:

Fibroblast growth factor 23

GATA3:

GATA-binding factor 3

GCM2:

Glial cell missing homologue 2

GNAS:

Guanine nucleotide–binding protein alpha subunit

HDR:

Hypoparathyroidism, sensorineural deafness, and renal disease

HVDRR:

Hereditary vitamin D–resistant rickets

MELAS:

Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes

MTP:

Mitochondrial trifunctional protein

PHP:

Pseudohypoparathyroidism

PTH:

Parathyroid hormone

RANK:

Receptor activator of nuclear factor kappa-B ligand

References

  1. Myrtle JF, Norman AW. Vitamin D: a cholecalciferol metabolite highly active in promoting -intestinal calcium transport. Science. 1971;171(3966):79–82. https://doi.org/10.1126/science.171.3966.79.

    Article  CAS  PubMed  Google Scholar 

  2. Haussler MR, Boyce DW, Littledike ET, Rasmussen H. A rapidly acting metabolite of vitamin D3. Proc Natl Acad Sci U S A. 1971;68(1):177–81. https://doi.org/10.1073/pnas.68.1.177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Omdahl J, Holick M, Suda T, Tanaka Y, DeLuca HF. Biological activity of 1,25-dihydroxycholecalciferol. Biochemistry. 1971;10(15):2935–40. https://doi.org/10.1021/bi00791a022.

    Article  CAS  PubMed  Google Scholar 

  4. Holick MF, Schnoes HK, DeLuca HF. Identification of 1,25-dihydroxycholecalciferol, a form of vitamin D3 metabolically active in the intestine. Proc Natl Acad Sci U S A. 1971;68(4):803–4. https://doi.org/10.1073/pnas.68.4.803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown EM. Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab. 2013;27(3):333–43. https://doi.org/10.1016/j.beem.2013.02.006.

    Article  CAS  PubMed  Google Scholar 

  6. Omdahl JL. Interaction of the parathyroid and 1,25-dihydroxyvitamin D3 in the control of renal 25-hydroxyvitamin D3 metabolism. J Biol Chem. 1978;253(23):8474–8.

    CAS  PubMed  Google Scholar 

  7. Henry HL, Midgett RJ, Norman AW. Regulation of 25-hydroxyvitamin D3-1-hydroxylase in vivo. J Biol Chem. 1974;249(23):7584–92.

    Article  CAS  Google Scholar 

  8. Raisz LG. Bone resorption in tissue culture. Factors influencing the response to parathyroid hormone. J Clin Invest. 1965;44:103–16. https://doi.org/10.1172/jci105117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reynolds JJ, Dingle JT. A sensitive in vitro method for studying the induction and inhibition of bone resorption. Calcif Tissue Res. 1970;4(4):339–49. https://doi.org/10.1007/bf02279136.

    Article  CAS  PubMed  Google Scholar 

  10. Bouhtiauy I, Lajeunesse D, Brunette MG. The mechanism of parathyroid hormone action on calcium reabsorption by the distal tubule. Endocrinology. 1991;128(1):251–8. https://doi.org/10.1210/endo-128-1-251.

    Article  CAS  PubMed  Google Scholar 

  11. Kitazawa R, Kitazawa S. Vitamin D(3) augments osteoclastogenesis via vitamin D-responsive element of mouse RANKL gene promoter. Biochem Biophys Res Commun. 2002;290(2):650–5. https://doi.org/10.1006/bbrc.2001.6251.

    Article  CAS  PubMed  Google Scholar 

  12. Scheven BA, Hamilton NJ. Retinoic acid and 1,25-dihydroxyvitamin D3 stimulate osteoclast formation by different mechanisms. Bone. 1990;11(1):53–9. https://doi.org/10.1016/8756-3282(90)90072-7.

    Article  CAS  PubMed  Google Scholar 

  13. Friedman PA, Gesek FA. Cellular calcium transport in renal epithelia: measurement, mechanisms, and regulation. Physiol Rev. 1995;75(3):429–71. https://doi.org/10.1152/physrev.1995.75.3.429.

    Article  CAS  PubMed  Google Scholar 

  14. Chambers TJ, McSheehy PM, Thomson BM, Fuller K. The effect of calcium-regulating hormones and prostaglandins on bone resorption by osteoclasts disaggregated from neonatal rabbit bones. Endocrinology. 1985;116(1):234–9. https://doi.org/10.1210/endo-116-1-234.

    Article  CAS  PubMed  Google Scholar 

  15. Nabeshima Y. The discovery of alpha-Klotho and FGF23 unveiled new insight into calcium and phosphate homeostasis. Cell Mol Life Sci. 2008;65(20):3218–30. https://doi.org/10.1007/s00018-008-8177-0.

    Article  CAS  PubMed  Google Scholar 

  16. Macefield G, Burke D. Paraesthesiae and tetany induced by voluntary hyperventilation. Increased excitability of human cutaneous and motor axons. Brain. 1991;114. ( Pt 1B:527–40. https://doi.org/10.1093/brain/114.1.527.

    Article  PubMed  Google Scholar 

  17. Fanconi A, Rose GA. The ionized, complexed, and protein-bound fractions of calcium in plasma; an investigation of patients with various diseases which affect calcium metabolism, with an additional study of the role of calcium ions in the prevention of tetany. Q J Med. 1958;27(108):463–94.

    CAS  PubMed  Google Scholar 

  18. Han P, Trinidad BJ, Shi J. Hypocalcemia-induced seizure: demystifying the calcium paradox. ASN Neuro. 2015;7(2) https://doi.org/10.1177/1759091415578050.

  19. Nardone R, Brigo F, Trinka E. Acute symptomatic seizures caused by electrolyte disturbances. J Clin Neurol. 2016;12(1):21–33. https://doi.org/10.3988/jcn.2016.12.1.21.

    Article  PubMed  Google Scholar 

  20. Swash M, Rowan AJ. Electroencephalographic criteria of hypocalcemia and hypercalcemia. Arch Neurol. 1972;26(3):218–28. https://doi.org/10.1001/archneur.1972.00490090044003.

    Article  CAS  PubMed  Google Scholar 

  21. Aggarwal S, Kailash S, Sagar R, Tripathi M, Sreenivas V, Sharma R, et al. Neuropsychological dysfunction in idiopathic hypoparathyroidism and its relationship with intracranial calcification and serum total calcium. Eur J Endocrinol. 2013;168(6):895–903. https://doi.org/10.1530/eje-12-0946.

    Article  CAS  PubMed  Google Scholar 

  22. Sugar O. Central neurological complications of hypoparathyroidism. AMA Arch Neurol Psychiatry. 1953;70(1):86–107. https://doi.org/10.1001/archneurpsyc.1953.02320310092008.

    Article  CAS  PubMed  Google Scholar 

  23. Goswami R, Sharma R, Sreenivas V, Gupta N, Ganapathy A, Das S. Prevalence and progression of basal ganglia calcification and its pathogenic mechanism in patients with idiopathic hypoparathyroidism. Clin Endocrinol. 2012;77(2):200–6. https://doi.org/10.1111/j.1365-2265.2012.04353.x.

    Article  CAS  Google Scholar 

  24. Mitchell DM, Regan S, Cooley MR, Lauter KB, Vrla MC, Becker CB, et al. Long-term follow-up of patients with hypoparathyroidism. J Clin Endocrinol Metab. 2012;97(12):4507–14. https://doi.org/10.1210/jc.2012-1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hochman HI, Mejlszenkier JD. Cataracts and pseudotumor cerebri in an infant with vitamin D-deficiency rickets. J Pediatr. 1977;90(2):252–4. https://doi.org/10.1016/s0022-3476(77)80643-4.

    Article  CAS  PubMed  Google Scholar 

  26. Reddy CV, Gould L, Gomprecht RF. Unusual electrocardiographic manifestations of hypocalcemia. Angiology. 1974;25(11):764–8. https://doi.org/10.1177/000331977402501105.

    Article  CAS  PubMed  Google Scholar 

  27. Lehmann G, Deisenhofer I, Ndrepepa G, Schmitt C. ECG changes in a 25-year-old woman with hypocalcemia due to hypoparathyroidism. Hypocalcemia mimicking acute myocardial infarction. Chest. 2000;118(1):260–2. https://doi.org/10.1378/chest.118.1.260.

    Article  CAS  PubMed  Google Scholar 

  28. Wong CK, Lau CP, Cheng CH, Leung WH, Freedman B. Hypocalcemic myocardial dysfunction: short- and long-term improvement with calcium replacement. Am Heart J. 1990;120(2):381–6. https://doi.org/10.1016/0002-8703(90)90083-a.

    Article  CAS  PubMed  Google Scholar 

  29. Bashour T, Basha HS, TO C. Hypocalcemic cardiomyopathy. Chest. 1980;78(4):663–5. https://doi.org/10.1378/chest.78.4.663.

    Article  CAS  PubMed  Google Scholar 

  30. Cusano NE, Bilezikian JP. Signs and symptoms of hypoparathyroidism. Endocrinol Metab Clin N Am. 2018;47(4):759–70. https://doi.org/10.1016/j.ecl.2018.07.001.

    Article  Google Scholar 

  31. Kinirons MJ, Glasgow JF. The chronology of dentinal defects related to medical findings in hypoparathyroidism. J Dent. 1985;13(4):346–9. https://doi.org/10.1016/0300-5712(85)90032-6.

    Article  CAS  PubMed  Google Scholar 

  32. Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci U S A. 1996;93(26):15233–8. https://doi.org/10.1073/pnas.93.26.15233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wills MR, Bruns DE, Savory J. Disorders of calcium homeostasis in the fetus and neonate. Ann Clin Lab Sci. 1982;12(2):79–88.

    CAS  PubMed  Google Scholar 

  34. Tsang RC, Kleinman LI, Sutherland JM, Light IJ. Hypocalcemia in infants of diabetic mothers. Studies in calcium, phosphorus, and magnesium metabolism and parathormone responsiveness. J Pediatr. 1972;80(3):384–95. https://doi.org/10.1016/s0022-3476(72)80494-3.

    Article  CAS  PubMed  Google Scholar 

  35. Tsang RC, Chen I, Friedman MA, Gigger M, Steichen J, Koffler H, et al. Parathyroid function in infants of diabetic mothers. J Pediatr. 1975;86(3):399–404. https://doi.org/10.1016/s0022-3476(75)80970-x.

    Article  CAS  PubMed  Google Scholar 

  36. Venkataraman PS, Tsang RC, Greer FR, Noguchi A, Laskarzewski P, Steichen JJ. Late infantile tetany and secondary hyperparathyroidism in infants fed humanized cow milk formula. Longitudinal follow-up. Am J Dis Child. 1985;139(7):664–8. https://doi.org/10.1001/archpedi.1985.02140090026018.

    Article  CAS  PubMed  Google Scholar 

  37. Gafni RI, Collins MT. Hypoparathyroidism. N Engl J Med. 2019;380(18):1738–47. https://doi.org/10.1056/NEJMcp1800213.

    Article  PubMed  Google Scholar 

  38. Jyonouchi S, McDonald-McGinn DM, Bale S, Zackai EH, Sullivan KE. CHARGE (coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, ear anomalies/deafness) syndrome and chromosome 22q11.2 deletion syndrome: a comparison of immunologic and nonimmunologic phenotypic features. Pediatrics. 2009;123(5):e871–7. https://doi.org/10.1542/peds.2008-3400.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mannstadt M, Bilezikian JP, Thakker RV, Hannan FM, Clarke BL, Rejnmark L, et al. Hypoparathyroidism. Nat Rev Dis Primers. 2017;3:17055. https://doi.org/10.1038/nrdp.2017.55.

    Article  PubMed  Google Scholar 

  40. Kisand K, Peterson P. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. J Clin Immunol. 2015;35(5):463–78. https://doi.org/10.1007/s10875-015-0176-y.

    Article  CAS  PubMed  Google Scholar 

  41. Han SI, Tsunekage Y, Kataoka K. Gata3 cooperates with Gcm2 and MafB to activate parathyroid hormone gene expression by interacting with SP1. Mol Cell Endocrinol. 2015;411:113–20. https://doi.org/10.1016/j.mce.2015.04.018.

    Article  CAS  PubMed  Google Scholar 

  42. Harvey JN, Barnett D. Endocrine dysfunction in Kearns-Sayre syndrome. Clin Endocrinol. 1992;37(1):97–103. https://doi.org/10.1111/j.1365-2265.1992.tb02289.x.

    Article  CAS  Google Scholar 

  43. Naiki M, Ochi N, Kato YS, Purevsuren J, Yamada K, Kimura R, et al. Mutations in HADHB, which encodes the beta-subunit of mitochondrial trifunctional protein, cause infantile onset hypoparathyroidism and peripheral polyneuropathy. Am J Med Genet A. 2014;164a(5):1180–7. https://doi.org/10.1002/ajmg.a.36434.

    Article  CAS  PubMed  Google Scholar 

  44. Burren CP, Curley A, Christie P, Rodda CP, Thakker RV. A family with autosomal dominant hypocalcaemia with hypercalciuria (ADHH): mutational analysis, phenotypic variability and treatment challenges. J Pediatr Endocrinol Metab. 2005;18(7):689–99. https://doi.org/10.1515/jpem.2005.18.7.689.

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, et al. Association between activating mutations of calcium-sensing receptor and Bartter's syndrome. Lancet. 2002;360(9334):692–4. https://doi.org/10.1016/s0140-6736(02)09842-2.

    Article  CAS  PubMed  Google Scholar 

  46. Tenhola S, Voutilainen R, Reyes M, Toiviainen-Salo S, Juppner H, Makitie O. Impaired growth and intracranial calcifications in autosomal dominant hypocalcemia caused by a GNA11 mutation. Eur J Endocrinol. 2016;175(3):211–8. https://doi.org/10.1530/eje-16-0109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kifor O, McElduff A, LeBoff MS, Moore FD Jr, Butters R, Gao P, et al. Activating antibodies to the calcium-sensing receptor in two patients with autoimmune hypoparathyroidism. J Clin Endocrinol Metab. 2004;89(2):548–56. https://doi.org/10.1210/jc.2003-031054.

    Article  CAS  PubMed  Google Scholar 

  48. de Jong M, Nounou H, Rozalen Garcia V, Christakis I, Brain C, Abdel-Aziz TE, et al. Children are at a high risk of hypocalcaemia and hypoparathyroidism after total thyroidectomy. J Pediatr Surg. 2019; https://doi.org/10.1016/j.jpedsurg.2019.06.027.

  49. Kamath SD, Rao BS. Delayed post-surgical hypoparathyroidism: the forgotten chameleon! J Clin Diagn Res. 2017;11(2):Od07–od9. https://doi.org/10.7860/jcdr/2017/23609.9260.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Agus ZS. Hypomagnesemia. J Am Soc Nephrol. 1999;10(7):1616–22.

    CAS  PubMed  Google Scholar 

  51. Holick MF, Chen TC, Lu Z, Sauter E. Vitamin D and skin physiology: a D-lightful story. J Bone Miner Res. 2007;22 Suppl 2:V28–33. https://doi.org/10.1359/jbmr.07s211.

    Article  PubMed  Google Scholar 

  52. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A. 2004;101(20):7711–5. https://doi.org/10.1073/pnas.0402490101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brodie MJ, Boobis AR, Hillyard CJ, Abeyasekera G, Stevenson JC, MacIntyre I, et al. Effect of rifampicin and isoniazid on vitamin D metabolism. Clin Pharmacol Ther. 1982;32(4):525–30. https://doi.org/10.1038/clpt.1982.197.

    Article  CAS  PubMed  Google Scholar 

  54. Fraser D, Kooh SW, Kind HP, Holick MF, Tanaka Y, DeLuca HF. Pathogenesis of hereditary vitamin-D-dependent rickets. An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1 alpha,25-dihydroxyvitamin D. N Engl J Med. 1973;289(16):817–22. https://doi.org/10.1056/nejm197310182891601.

    Article  CAS  PubMed  Google Scholar 

  55. Wang JT, Lin CJ, Burridge SM, Fu GK, Labuda M, Portale AA, et al. Genetics of vitamin D 1alpha-hydroxylase deficiency in 17 families. Am J Hum Genet. 1998;63(6):1694–702. https://doi.org/10.1086/302156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Malloy PJ, Pike JW, Feldman D. The vitamin D receptor and the syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocr Rev. 1999;20(2):156–88. https://doi.org/10.1210/edrv.20.2.0359.

    Article  CAS  PubMed  Google Scholar 

  57. Clarke BL, Brown EM, Collins MT, Juppner H, Lakatos P, Levine MA, et al. Epidemiology and diagnosis of hypoparathyroidism. J Clin Endocrinol Metab. 2016;101(6):2284–99. https://doi.org/10.1210/jc.2015-3908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. review MGC. Pseudohypoparathyroidism: diagnosis and treatment. J Clin Endocrinol Metab. 2011;96(10):3020–30. https://doi.org/10.1210/jc.2011-1048.

    Article  CAS  Google Scholar 

  59. Stewart AF, Longo W, Kreutter D, Jacob R, Burtis WJ. Hypocalcemia associated with calcium-soap formation in a patient with a pancreatic fistula. N Engl J Med. 1986;315(8):496–8. https://doi.org/10.1056/nejm198608213150806.

    Article  CAS  PubMed  Google Scholar 

  60. Hoffman E. The Chvostek sign; a clinical study. Am J Surg. 1958;96(1):33–7. https://doi.org/10.1016/0002-9610(58)90868-7.

    Article  CAS  PubMed  Google Scholar 

  61. Fonseca OA, Calverley JR. Neurological manifestations of hypoparathyroidism. Arch Intern Med. 1967;120(2):202–6.

    Article  CAS  Google Scholar 

  62. Thomas TC, Smith JM, White PC, Adhikari S. Transient neonatal hypocalcemia: presentation and outcomes. Pediatrics. 2012;129(6):e1461–7. https://doi.org/10.1542/peds.2011-2659.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Swartz Topor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vakharia, J.D., Topor, L.S. (2021). Hypocalcemia. In: Stanley, T., Misra, M. (eds) Endocrine Conditions in Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-030-52215-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52215-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52214-8

  • Online ISBN: 978-3-030-52215-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics